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Abstract

This research aims mainly to study properties of three different difference

equations. The first equation is

xn+1 = pn +
xn−1

xn
, n = 0, 1, ...,

with initial conditions x−1 ≥ 0, x0 > 0, and where {pn} is a positive bounded

sequence,. The second equation is

xn+1 = An +
xpn−1

xqn
, n = 0, 1, ...,

where An is a positive bounded sequence, the initial conditions x−1 ≥ 0,

x0 > 0, and p, q ∈ (0,∞). And the third equation is

xn+1 = pn +
xn
xn−1

, n = 0, 1, ...,

where x−1 > 0, x0 ≥ 0, and pn is a positive bounded sequence. For each

equation we studied periodicity, stability, attractivity and boundedness.



 

_____________________________________________         

 الملخص

 

 الهدف من هذا البحث دراسة سلوك المعادلات التفاضلية المنفصلة التالية

𝑥𝑛+1 = 𝑝𝑛 +
𝑥𝑛−1

𝑥𝑛
,        𝑛 = 0,1, …, 

𝑥−1حيث أن  ≥ 0, 𝑥0 >  .عبارة عن متتالية موجبة محدودة𝑝𝑛  و 0

 والمعادلة 

 𝑥𝑛+1 = 𝐴𝑛 +
𝑥𝑛−1
𝑝

𝑥𝑛
𝑞 ,        𝑛 = 0,1, …, 

𝑥−1حيث أن  ≥ 0, 𝑥0 > ,𝑝و   متتالية موجبة محدودة𝐴𝑛  و 0 𝑞 ∈ (0,∞). 

 و المعادلة 

𝑥𝑛+1 = 𝑝𝑛 +
𝑥𝑛
𝑥𝑛−1

,        𝑛 = 0,1, …, 

𝑥−1حيث أن  > 0, 𝑥0 ≥  .عبارة عن متتالية موجبة محدودة𝑝𝑛  و 0
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Chapter 1

Introduction

1.1 Difference Equations

Difference equation is an equation that defines a relation recursively, in

other words, each term of the sequence is defined as a function of the previous

terms of the sequence. The difference equation of order k is of the form

xn = f(xn−1, xn−2, ..., xn−k), n = 0, 1, 2, ..., (1.1)

Starting from a point x0 for the equation xn+1 = f(xn), you will get the

following sequence

x0, f(x0), f(f(x0)), f(f(f(x0))), ....

This sequence can be written as

x0, f(x0), f 2(x0), f 3(x0), ....

f(x0) is called the first iterate of x0 under the function f , f 2(x0) is the second

iterate under f , f 3(x0) is the third iterate under f . The set of all iterates

{fn(x0) : n ≥ 0} where f 0(x0) = x0 is called the positive orbit of x0, the

orbit will be denoted by O(x0).

Difference equations can be classified into different categories according to

one or more of the following properties:

(1) Linear difference equations: an equation is said to be linear if the

function f in Eq.(1.1) is a linear function.
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(2) Nonlinear difference equations: an equation is said to be nonlinear

if the function in Eq.(1.1) is a nonlinear function.

(3) Linear homogeneous difference equations: a kth-order linear ho-

mogeneous difference equation is an equation of the form

yn+k + p1(n)yn+k−1 + ...+ pk(n)yn = 0,

where pk(n) 6= 0 for all n ≥ n0.

(4) Linear nonhomogeneous difference equations: a kth-order linear

nonhomogeneous difference equation is an equation of the form

yn+k + p1(n)yn+k−1 + ...+ pk(n)yn = g(n),

where pk(n) 6= 0 for all n ≥ n0.

The sequence g(n) is called the forcing term.

(5) Autonomous difference equations: a kth-order difference equation

is said to be autonomous if it is time-invariant, in other words

xn = f(xn−1, xn−2, ..., xn−k).

(6) Nonautonomous difference equations[8]: a kth-order difference

equation is said to be nonautonomous if the function f is replaced by a

new function g of two variables, g : Z+×R→ R, this can be denoted as

xn = g(n, xn−1, xn−2, ..., xn−k).

In this case the equation is time-variant.

(7) Linear difference equation with constant coefficients: a kth-order

linear difference equation with constant coefficients is an equation of the

form

xn+k + p1xn+k−1 + p2xn+k−2 + ...+ pkxn = g(n),

where pi’s are constants and pk 6= 0 for all n ≥ n0.
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(8) Linear difference equation with nonconstant coefficients: a kth-

order linear difference equation with nonconstant coefficients is an equa-

tion of the form

xn+k + p1(n)xn+k−1 + p2(n)xn+k−2 + ...+ pk(n)xn = g(n),

where pk(n) 6= 0 for all n ≥ n0.

1.2 Sequences

A sequence xn of real numbers is a function defined on the set of natural

numbers whose range is contained in the set of real numbers.

This can be abbreviated as

f : N→ R.

Definition 1.2.1 [5]The limit of a sequence

We say that a number x is a limit of the sequence xn if for each ε > 0, there

exists a natural number K such that for all n ≥ K we have |xn − x| < ε. In

symbols

(ε > 0)(∃K)(n ≥ K)(|xn − x| < ε).

Definition 1.2.2 [5]Bounded sequence

A sequence xn of real numbers is said to be bounded if there exists a positive

real number M such that |xn| ≤M for all natural numbers n.

Definition 1.2.3 [18] If xn is a sequence, we define the lim supxn as

lim supxn = inf
n

sup
k≥n

xk.

The lim inf xn is defined as

lim inf xn = sup
n

inf
k≥n

xk.
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Definition 1.2.4 Let xn, x̄n be two sequences, we say that the sequence xn

converges to the sequence x̄n, in symbols

xn → x̄n

if

lim
n→∞

xn
x̄n

= 1.

The sequence {xn} is said to be m-periodic if xn+m = xn.

1.3 Behavior of Solutions of Difference Equa-

tions

The difference equation of order k + 1 is of the form

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, 2, ..., (1.2)

A point x̄ is said to be a fixed point of the difference Eq. (1.2) if

f(x̄, x̄, ..., x̄) = x̄.

Definition 1.3.1 A point x̄ in the domain of f is said to be an equilibrium

point of Eq. (1.2) if it is a fixed point of f .

Graphically, an equilibrium point is the x-coordinate of the point where the

function intersects the line y = x.

Definition 1.3.2 Stability

i) An equilibrium point x̄ of Eq. (1.2) is called locally stable if, for every

ε > 0, there exists δ > 0 such that if {xn}∞n=−k is a solution of Eq. (1.2)

with

|x−k − x̄|+ |x1−k − x̄|+ ...+ |x0 − x̄| < δ,

then

|xn − x̄| < ε, for all n ≥ 0.
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ii) An equilibrium point x̄ of Eq. (1.2) is called locally asymptotically stable

if, x̄ is locally stable, and if in addition there exists γ > 0 such that if

{xn}∞n=−k is a solution of Eq. (1.2) with

|x−k − x̄|+ |x1−k − x̄|+ ...+ |x0 − x̄| < γ,

then

lim
n→∞

xn = x̄.

iii) An equilibrium point x̄ of Eq. (1.2) is called a global attractor if, for

every solution {xn}∞n=−k of Eq. (1.2) we have

lim
n→∞

xn = x̄.

iv) An equilibrium point x̄ of Eq. (1.2) is called globally asymptotically stable

if x̄ is locally stable , and x̄ is globally attractor of Eq. (1.2).

v) An equilibrium point x̄ of Eq. (1.2) is called unstable if x̄ is not locally

stable.

Let x̄ be the equilibrium point of Eq. (1.2), and suppose that f is a contin-

uously differentiable function in some neighborhood of x̄.

Let the partial derivative of f(u0, u1, ..., uk) with respect to ui be denoted as

pi =
∂f

∂ui
(x̄, x̄, ..., x̄) for i = 0, 1, 2, ..., k.

Then the linearized equation of the difference equation around the equilib-

rium point is

zn+1 = p0zn + p1zn−1 + ...+ pkzn−k, n = 0, 1, 2, ....

The characteristic equation of the difference equation about x̄ is

λk+1 − p0λ
k − ...− pk−1λ− pk = 0. (1.3)

The following theorem is known as the Linearized Stability Theorem.

Theorem 1.3.1 [11]Linearized Stability Theorem

Assume that f is a continuously differentiable function defined on some open

neighborhood about the equilibrium point x̄. Then the following statements

are true:
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i) If all roots of Eq. (1.3) have absolute value less than 1, then the equilib-

rium point x̄ of Eq. (1.1) is locally asymptotically stable.

ii) If at least one of the roots of Eq.(1.3) has absolute value greater than 1,

then the equilibrium point x̄ is unstable.

iii) If all roots of Eq.(1.3) have absolute value greater than 1, then the equi-

librium point x̄ is a source.

1.4 Banach Spaces

To define the Banach space we must define the norm

Definition 1.4.1 A norm on a linear space X is a function ‖.‖ : X → R,

∀x ∈ X with the following properties:

(a) ‖x‖ > 0, ∀ x ∈ X, and ‖x‖ = 0 if and only if x = 0.

(b) ‖λx‖ = |λ|‖x‖, ∀x ∈ X and λ ∈ R.

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ X.

A normed space (X, ‖.‖) is a space X with a norm defined on it.

Definition 1.4.2 [13] A metric, or distance function on the set X is

d : X ×X → R,

where

(a) d(x, y) ≥ 0, ∀x, y ∈ X, and d(x, y) = 0 if and only if x = y.

(b) d(x, y) = d(y, x), ∀x, y ∈ X.

(c) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X.

A metric space (X, d) is a set X equipped with a metric d.

A metric space X is complete if every Cauchy sequence in X converges to a

limit in X, and xn is a Cauchy sequence if for every ε > 0 there is a natural

number N such that |xm − xn| < ε, ∀m,n ≥ N.
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Definition 1.4.3 [13]Banach Space

Let K be one of the fields R or C, a Banach space over K is a normed K-

vector space (X, ‖.‖) with respect to the metric d(x, y) = ‖x− y‖, x, y ∈ X.

Definition 1.4.4 [13] A space X is said to be compact if every open cover-

ing A of X contains a finite subcollection that also covers X.

A set S ⊆ Rn is convex if and only if ∀x, y ∈ S and λ ∈ [0, 1];

λx+ (1− λ)y ∈ S.
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1.5 Periodic Points and Cycles

Definition 1.5.1 [8] Let b be in the domain of f . Then:

(i) b is called periodic point of f if for some positive integer k, fk(b) = b.

Hence a point is k-periodic if it is a fixed point of fk, that is, if it is an

equilibrium point of the difference equation

x(n+ 1) = g(x(n)),

where g = fk.

The periodic orbit of b, O(b) = {b, f(b), f 2(b), ..., fk−1(b)}, is often

called a k-cycle.

(ii) b is called eventually k-periodic if for some positive integer m, fm(b) is

a k-periodic point. In other words, b is eventually k-periodic if

fm+k(b) = fm(b).

Graphically, a k-periodic point is the x-coordinate of the point where the

graph of fk meets the diagonal line y = x.

Definition 1.5.2 [8] Let b be a k-period point of f . Then b is:

(i) stable if it is a stable fixed point of fk.

(ii) asymptotically stable if it is an asymptotically stable fixed point of fk.

(iii) unstable if it is an unstable fixed point of fk.

The cycle {x(0) = b, x(1) = f(b), x(2) = f 2(b), ..., x(k − 1) = fk−1(b)} is

called a k-cycle.
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1.6 Oscillating Sequences and Semicycles

Definition 1.6.1 [7] A sequence {xn} is said to oscillate about zero or sim-

ply oscillate if the terms xn are neither eventually all positive nor eventually

all negative.

Definition 1.6.2 [7] A sequence {xn} is said to oscillate about {yn} if the

sequence {xn − yn} oscillates.

Definition 1.6.3 [7] Assume that {xn} and {yn} are positive sequences, we

define a positive semicycle of {xn} relative to the sequence {yn} as a string

of terms C+ = {xl+1, xl+2, ..., xm} such that xi ≥ yi for i = l + 1, ...,m with

l ≥ −1 and m ≤ ∞ and such that either l = −1 or l ≥ 0 and xl < yl and

either m =∞ or m <∞ and xm+1 < ym+1.

Definition 1.6.4 [7] Let {xn}, {yn} be two positive sequences, A negative

semicycle of {xn} relative to {yn} is a string of terms C− = {xj+1, ..., xl},
such that xi < yi for i = j + 1, j + 2, ..., l, with j ≥ −1 and l ≤ ∞ and such

that either j = −1 or j ≥ 0 and xj ≥ yj and either l = ∞ or l < ∞ and

xl+1 ≥ yl+1.

1.7 Big o notation

Definition 1.7.1 Let f(x), g(x) be two functions defined on R or C. Then

we say that f(x) = O(g(x)), x → ∞, if there is a positive constant M such

that

|f(x)| ≤M |g(x)| for all x ≥ x0.

Proposition 1.7.1 If the limit

lim
x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ = C < +∞

then f(x) = O(g(x)).
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f = O(g) if f is of order not exceeding the order of g.

In order to use the big O notation, it is essential to understand how the O

symbol behaves within a formula. Here we have a list of its properties

O(f(x)g(x)) = O(f(x))O(g(x))

O(f(x)) +O(g(x)) = O(|f(x)|+ |g(x)|)

f(x) +O(g(x)) = O(|f(x)|+ |g(x)|)

f(x)O(g(x)) = O(f(x)g(x))

O(cf(x)) = O(f(x)), c ∈ R c 6= 0

Example

Show that (
n

t2 + n2

)n
= O(

1

tn
) n→∞, for n ∈ Z+

Solution

Without loss of generality we assume t > 1. We have that t2 + n2 = (t −
n)2 + 2tn ≥ 2nt, then(

n

t2 + n2

)n
≤ 1

(2tn)n
=

1

2n

(
1

tn

)
≤ 1

tn
.

Then (
n

t2 + n2

)n
= O(

1

tn
)

Using proposition (1.7.1) we can calculate the following examples

6 = O(1) at any point

3x2 = O(x2) at any point

sinx = O(1) as x→ 0

sinx = O(x) as x→ 0.

1.8 Taylor Series and polynomials

Definition 1.8.1 Let f be a real function defined on a domain D. If the

function is continuous at every point in D we say that it belongs to C0(D).
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If the function is differentiable n times at each point of D (excluding the

boundary) and the n− th derivative is continuous , we say that the function

is in Cn(D). If the function can be differentiated infinitely many times we

say that it is in C∞(D).

Theorem 1.8.1 Taylor’s Theorem

If a function f(x) belongs to Cn+1(D) and α ∈ D, then the function can be

approximated with a degree n polynomial of this kind

Pn.α(x) =
n∑
i=0

f (i)(α)

i!
(x− α)i

Theorem 1.8.2 Let f be a real function in Cn+1([a, b]), then for every α ∈
(a, b) there is a function hn(x) such that

f(x) = Pn,α(x) + hn(x)(x− α)n

and

lim
x→a

hn(x) = 0

Theorem 1.8.3 In the setup of the previous theorem, for every x ∈ (a, b)

there is a point η between x and α such that

hn(x)(x− α)n =
fn+1(η)

(n+ 1)!
(x− a)n+1.

Taylor Series

If a function (x) is C+∞ over some interval [a, b], the Taylor series centered

at some point α ∈ (a, b) is

f(x) =
∞∑
n=0

f (n)(α)

n!
(x− α)n

Remainder of Taylor polynomial as a big O

Proposition 1.8.1 Let f(x) be a function in Cn+1([a, b]) and α is a point

in (a, b), the Taylor expansion can be written in big O notation :

f(x) = Pn,α(x) +O((x− α)n+1)

For example,

ex = 1 + x+
x2

2
+O(x3).



Chapter 2

On The Difference Equation

xn+1 = pn +
xn−1
xn

Many authors studied the behavior of the difference equation

xn+1 = pn +
xn−1

xn
, n = 0, 1, ...,

where pn is a positive bounded sequence and the initial values x−1,x0 are

positive and some of its extensions. We note that the papers [1],[7],[12],[20]

were devoted for these equations.

In this part we are interested in studying boundedness, persistence, un-

bounded solutions, attractivity and the global asymptotic behavior of posi-

tive solutions of the nonautonomous difference equation

xn+1 = pn +
xn−1

xn
, n = 0, 1, ..., (2.1)

with initial conditions x−1 ≥ 0, x0 > 0, and where {pn} is a positive bounded

sequence, with

lim inf
n→∞

pn = p ≥ 0 and lim sup
n→∞

pn = q <∞. (2.2)

Theorem 2.0.4 [7] Assume that all the roots of the polynomial

P (t) = tN − s1t
N−1 − ...− sN ,
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where s1, s2, ..., sN ≥ 0, have absolute value less than 1. If {xn} is a nonneg-

ative solution of the inequality

xn+N ≤ s1xn+N−1 + ...+ sNxn + yn,

where yn ≥ 0, for n = 0, 1, ..., then the following statements are true:

(i) If
∑∞

n=0 yn converges, then
∑∞

n=0 xn converges.

(ii) If {yn} is bounded, then {xn} is bounded.

(iii) If limn→∞ yn = 0, then limn→∞ xn = 0.

Theorem 2.0.5 [7](Brower Fixed Point Theorem)

The continuous operator

A : M →M

has at least one fixed point when M is compact, convex, nonempty set in a

finite dimensional normed space over K(K = R or K = C).

2.1 Boundedness and persistence

We will dedicate this section for studying boundedness and persistence of

Eq.(2.1) given Eq.(2.2).

Lemma 2.1.1 [7] Let {xn} be a solution of (2.1), also assume that (2.2) is

satisfied, then the following are true:

(i) If p > 0, then {xn} persists.

(ii) If p > 1, then {xn} is bounded from above.

Proof. (i)It is obvious from the assumptions of Eq.(2.1) that {xn} > 0 for

all n = −1, 0, ..., this means that xn−1

xn
> 0, which concludes that

xn+1 = pn +
xn−1

xn
> pn.

So we obtain lim infn→∞ xn ≥ lim infn→∞ pn = p > 0, which implies the

persistence of the sequence {xn}.
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(ii) In this part we aim to show that {xn} is bounded from above.

From part(i) we know that xn ≥ pn−1 ≥ p − ε > 1, for sufficiently large n,

and for ε > 0. Using Eq.(2.1) we get

xn+1 = pn +
xn−1

xn
≤ pn +

xn−1

p− ε
.

Referring to Theorem (2.0.4), {xn} is bounded since {pn} is bounded.

Lemma 2.1.2 [7] Assume that Eq.(2.2) is satisfied and p > 1, and let {xn}
be a solution of Eq.(2.1). If

λ = lim inf
n→∞

xn and µ = lim sup
n→∞

xn,

then
pq − 1

q − 1
≤ λ ≤ µ ≤ pq − 1

p− 1
. (2.3)

Proof. Let ε > 0, then for n ≥ N0(ε), we have λ − ε ≤ xn ≤ µ + ε and

p− ε ≤ pn ≤ q + ε. Then

xn+1 = pn +
xn−1

xn
≥ p− ε+

λ− ε
µ+ ε

, (2.4)

and

xn+1 = pn +
xn−1

xn
≤ q + ε+

µ+ ε

λ− ε
. (2.5)

As n→∞, we have

λ ≥ p− ε+
λ− ε
µ+ ε

, (2.6)

and

µ ≤ q + ε+
µ+ ε

λ− ε
. (2.7)

It is known that ε > 0 is arbitrary, hence,

λ ≥ p+
λ

µ
,

and

µ ≤ q +
µ

λ
.

Consequently,

λµ− pµ ≥ λ,
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and

λµ− qλ ≤ µ.

So we get

µp+ λ ≤ λµ ≤ qλ+ µ.

Hence,

µp− µ ≤ qλ− λ,

and so

µ(p− 1) ≤ λ(q − 1),

then
µ

λ
≤ q − 1

p− 1
and

λ

µ
≥ p− 1

q − 1
.

For n > N0, from Eq.(2.4) and Eq.(2.5) and using Taylor’s expansion at

ε = 0 we get

xn+1 ≥ p− ε+
λ− ε
µ+ ε

= p+
λ

µ
+O(ε)

≥ p+
p− 1

q − 1
+O(ε)

=
pq − p+ p− 1

q − 1
+O(ε)

=
pq − 1

q − 1
+O(ε).

To explain the calculations above we will use Taylor’s expansion of the func-

tion f(ε) = p− ε+ λ−ε
µ+ε

centered at ε = 0 which is

f(ε) =
∞∑
n=0

f (n)(0)

n!
(x− 0)n

= p+
λ

µ
+ f

′
(0)ε+

f
′′

2!
(0)ε2 + ...

= p+
λ

µ
+O(ε),
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and

xn+1 ≤ q + ε+
µ+ ε

λ− ε
= q +

µ

λ
+O(ε)

≤ q +
q − 1

p− 1
+O(ε)

=
pq − q + q − 1

p− 1
+O(ε)

=
pq − 1

p− 1
+O(ε).

Similarly,

f(ε) =
∞∑
n=0

f (n)(0)

n!
(x− 0)n

= q +
µ

λ
+ f

′
(0)ε+

f
′′

2!
(0)ε2 + ...

= q +
µ

λ
+O(ε).

ε > 0 is arbitrary, as n→∞ we achieve the result which is

λ ≥ pq − 1

q − 1
,

and

µ ≤ pq − 1

p− 1
.

So we get
pq − 1

q − 1
≤ λ ≤ µ ≤ pq − 1

p− 1
.

Theorem 2.1.1 [7] Consider the interval I = [ (PQ−1)
(Q−1)

, (PQ−1)
(P−1)

] where

1 < P ≤ pn ≤ Q, for n = 0, 1, .... If {xn} is a solution of Eq.(2.1) such that

x−1, x0 ∈ I, then xn ∈ I, for n = 0, 1, ....

Proof. We will use mathematical induction. Now,

x1 = p0 +
x−1

x0

(2.8)

It was assumed that x−1, x0 ∈ I = [ (PQ−1)
(Q−1)

, (PQ−1)
(P−1)

] which concludes that
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x−1

x0
≤

(PQ−1)
(P−1)

(PQ−1)
(Q−1)

,

and

x−1

x0
≥

(PQ−1)
(Q−1)

(PQ−1)
(P−1)

,

By substituting these two inequalities in (2.8) we get

x1 = p0 +
x−1

x0

≤ p0 +

(PQ−1)
(P−1)

(PQ−1)
(Q−1)

≤ Q+

(PQ−1)
(P−1)

(PQ−1)
(Q−1)

= Q+
Q− 1

P − 1

=
PQ−Q+Q− 1

P − 1

=
PQ− 1

P − 1
,

and

x1 = p0 +
x−1

x0

≥ p0 +

(PQ−1)
(Q−1)

(PQ−1)
(P−1)

≥ P +

(PQ−1)
(Q−1)

(PQ−1)
(P−1)

= P +
P − 1

Q− 1

=
PQ− P + P − 1

Q− 1

=
PQ− 1

Q− 1
.
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So x1 ∈ I. Assume the result holds for k = 2, 3, ..., n. Now, we aim to prove

the result for k = n+ 1

xn+1 = pn +
xn−1

xn

≤ Q+

(PQ−1)
(P−1)

(PQ−1)
(Q−1)

= Q+
Q− 1

P − 1

=
PQ−Q+Q− 1

P − 1

=
PQ− 1

P − 1
,

and

xn+1 = pn +
xn−1

xn

≥ P +

(PQ−1)
(Q−1)

(PQ−1)
(P−1)

= P +
P − 1

Q− 1

=
PQ− P + P − 1

Q− 1

=
PQ− 1

Q− 1
.

So xn+1 ∈ I.

We conclude that xn ∈ I, for all n = 0, 1, ....

2.2 Existence of unbounded solutions

In this section we will introduce sufficient conditions for the existence of

unbounded solutions of Eq.(2.1).

Lemma 2.2.1 [7] Consider Eq.(2.1). Then the following are true:

(i) Suppose there exists 0 < b < 1 such that 0 < p2n+1 ≤ b. Choose

x−1 >
1

1−b and 0 < x0 < 1. Then

x2n−1 >
1

1− b
and 0 < x2n < 1 for all n ≥ 0.
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(ii) Suppose there exists 0 < b < 1 such that 0 < p2n ≤ b. Choose 0 <

x−1 < 1 and x0 >
1

1−b . Then

0 < x2n−1 < 1 and x2n >
1

1− b
for all n ≥ 0.

Proof. To prove this lemma we will use mathematical induction.

(i)Assume that x−1 >
1

1−b and 0 < x0 < 1. Now,

x1 = p0 +
x−1

x0

>
x−1

x0

>
1

1−b

1
=

1

1− b
,

and

0 < x2 = p1 +
x0

x1

< b+
1
1

1−b
= b+ 1− b = 1.

Assume that the result holds for all k = 3, 4, ..., n − 1. In other words

x2k−1 > 1
1−b and 0 < x2k < 1. Now, we need to show that the result is

satisfied for k = n.

x2n−1 = p2n−2 +
x2n−3

x2n−2

>
x2n−3

x2n−2

>
1

1−b

1
>

1

1− b
,

and

x2n = p2n−1 +
x2n−2

x2n−1

< b+
1
1

1−b
= b+ 1− b = 1.

Consequently, x2n−1 >
1

1−b and 0 < x2n < 1, for all n ≥ 0.

(ii)Assume that 0 < x−1 < 1 and x0 >
1

1−b . Now,

0 < x1 = p0 +
x−1

x0

< b+
x−1

x0

< b+
1
1

1−b
= b+ 1− b = 1,

and

x2 = p1 +
x0

x1

>
x0

x1

>
1

1−b

1
=

1

1− b
.

Assume that for k = 3, 4, ..., n − 1, 0 < x2k−1 < 1 and x2k >
1

1−b . Now, for

k = n

0 < x2n−1 = p2n−2 +
x2n−3

x2n−2

< b+
1
1

1−b
= b+ 1− b = 1,

and

x2n = p2n−1 +
x2n−2

x2n−1

>
x2n−2

x2n−1

=
1

1−b

1
=

1

1− b
.

Then 0 < x2n−1 < 1 and x2n >
1

1−b , for all n ≥ 0.
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Lemma 2.2.2 [7] Consider Eq.(2.1) and suppose that either

0 < p2n+1 < 1 and lim
n→∞

p2n+1 = 0 or 0 < p2n < 1 and lim
n→∞

p2n = 0.

Then there exist unbounded solutions to Eq.(2.1).

Proof. We will use the mathematical induction to prove the result.

Case 1 Assume that

0 < p2n+1 < 1 and lim
n→∞

p2n+1 = 0.

Then there exists 0 < b < 1 such that p2n+1 ≤ b. Choose

x−1 >
1

1− b
, and 0 < x0 < 1.

According to Lemma 2.2.1 we have

x2n−1 >
1

1− b
and 0 < x2n < 1 for all n ≥ 0.

Since limn→∞ p2n+1 = 0, there exists N ≥ 1 such that n ≥ N − 1 and

p2n+1 <
b
2
.

x2N = p2N−1 +
x2N−2

x2N−1

<
b

2
+

1
1

1−b
=
b

2
+

1− b
1

=
2− b

2
.

x2N+1 = p2N +
x2N−1

x2N

>
x2N−1

x2N

>
1

1−b
2−b

2

=

(
2

2− b

)
1

1− b
.

x2N+2 = p2N+1 +
x2N

x2N+1

<
b

2
+

1
1

1−b
=
b

2
+

1− b
1

=
2− b

2
.

x2N+3 = p2N+2 +
x2N+1

x2N+2

>
x2N+1

x2N+2

>

(
2

2−b

)
1

1−b
2−b

2

=

(
2

2− b

)2
1

1− b
.

x2N+4 = p2N+3 +
x2N+2

x2N+3

<
b

2
+

1
1

1−b
=
b

2
+

1− b
1

=
2− b

2
.

x2N+5 = p2N+4 +
x2N+3

x2N+4

>
x2N+3

x2N+4

>

(
2

2−b

)2 1
1−b

2−b
2

=

(
2

2− b

)3
1

1− b
.

Assume that for n ≥ N

x2n <
2− b

2
and x2n+1 >

(
2

2− b

)n−N+1
1

1− b
.
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Now, for n+ 1 we have

x2n+2 = p2n+1 +
x2n

x2n+1

<
b

2
+

1
1

1−b
=
b

2
+

1− b
1

=
2− b

2
,

and

x2n+3 = p2n+2 +
x2n+1

x2n+2

>
x2n+1

x2n+2

>

(
2

2−b

)n−N+1 1
1−b

2−b
2

=

(
2

2− b

)n−N+2
1

1− b
.

Then the solution is unbounded.

Case 2 Assume that

0 < p2n < 1 and lim
n→∞

p2n = 0.

Then there exists 0 < b < 1 such that p2n ≤ b. Choose

0 < x−1 < 1 and x0 >
1

1− b
.

According to Lemma 2.2.1 we have

0 < x2n−1 < 1 and x2n >
1

1− b
for all n ≥ 0.

Since limn→∞ p2n = 0, there exists N ≥ 1 such that for n ≥ N − 1 we have

p2n <
b
2
.

x2N = p2N−1 +
x2N−2

x2N−1

>
x2N−2

x2N−1

>
1

1−b

1
=

1

1− b
.

x2N+1 = p2N +
x2N−1

x2N

<
b

2
+

1
1

1−b
=
b

2
+ 1− b =

2− b
2

.

x2N+2 = p2N+1 +
x2N

x2N+1

>
x2N

x2N+1

>
1

1−b
2−b

2

=

(
2

2− b

)
1

1− b
.

x2N+3 = p2N+2 +
x2N+1

x2N+2

<
b

2
+

1
1

1−b
=
b

2
+ 1− b =

2− b
2

.

x2N+4 = p2N+3 +
x2N+2

x2N+3

>
x2N+2

x2N+3

>

(
2

2−b

)
1

1−b
2−b

2

=

(
2

2− b

)2
1

1− b
.

x2N+5 = p2N+4 +
x2N+3

x2N+4

<
b

2
+

1
1

1−b
=
b

2
+ 1− b =

2− b
2

.
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x2N+6 = p2N+5 +
x2N+4

x2N+5

>
x2N+4

x2N+5

>

(
2

2−b

)2 1
1−b

2−b
2

=

(
2

2− b

)3
1

1− b
.

Assume that for n ≥ N ,

x2n >

(
2

2− b

)n−N
1

1− b
and x2n+1 <

2− b
2

.

Now, for n+ 1 we get

x2n+2 = p2n+1 +
x2n

x2n+1

>
x2n

x2n+1

>

(
2

2−b

)n−N 1
1−b

2−b
2

=

(
2

2− b

)n−N+1
1

1− b
,

and

x2N+3 = p2N+2 +
x2N+1

x2N+2

<
b

2
+

1
1

1−b
=
b

2
+

1− b
1

=
2− b

2
.

Then this solution is unbounded.

Theorem 2.2.1 [7] Suppose that 0 < pn < 1 and there exists 0 < b < 1

such that for all n either

p2n+1 ≤ b or p2n ≤ b.

Then there exist unbounded solutions to Eq.(2.1).

Proof. Case 1 p2n+1 ≤ b

If
∑∞

n=0 p2n < ∞, then limn→∞ p2n = 0, so there exist unbounded solutions

according to Lemma 2.2.2.

If
∑∞

n=0 p2n =∞, choose

x−1 >
1

1− b
and 0 < x0 < 1.

Referring to Lemma (2.2.1) 0 < x2n < 1 for all n ≥ 0, and

x1 = p0 +
x−1

x0

> p0 +
1

1−b

1
= p0 +

1

1− b
.

x3 = p2 +
x1

x2

> p2 +
p0 + 1

1−b

1
= p2 + p0 +

1

1− b
.

x5 = p4 +
x3

x4

> p4 +
p2 + p0 + 1

1−b

1
= p4 + p2 + p0 +

1

1− b
.
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Assume that for k = n− 1,

x2n−1 >

n−1∑
h=0

p2h +
1

1− b
.

We need to prove it for k = n. Now,

x2n+1 = p2n +
x2n−1

x2n

> p2n +

∑n−1
h=0 p2h + 1

1−b

1
=

n∑
h=0

p2h +
1

1− b
.

It is obvious that this subsequence is unbounded, so we have unbounded so-

lutions to Eq.(2.1).

Case 2 p2n ≤ b

If
∑∞

n=0 p2n+1 < ∞, then limn→∞ p2n+1 = 0, so there exist unbounded solu-

tions according to Lemma 2.2.2.

If
∑∞

n=0 p2n+1 =∞, choose

0 < x−1 < 1 and x0 >
1

1− b
.

Referring to Lemma 2.2.1 we have that 0 < x2n+1 < 1 for all n ≥ 0.

x2 = p1 +
x0

x1

> p1 +
1

1−b

1
= p1 +

1

1− b
.

x4 = p3 +
x2

x3

> p3 +
p1 + 1

1−b

1
= p3 + p1 +

1

1− b
.

x6 = p5 +
x4

x5

> p5 +
p3 + p1 + 1

1−b

1
= p5 + p3 + p1 +

1

1− b
.

Assume that for k = n− 1,

x2n−2 >
n−1∑
h=1

p2h−1 +
1

1− b
.

We need to prove this for k = n

x2n = p2n−1 +
x2n−2

x2n−1

> p2n−1 +

∑n−1
h=1 p2h−1 + 1

1−b

1
=

n∑
h=1

p2h−1 +
1

1− b
.

It is clear that there exist unbounded solutions.
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2.3 Attractivity

In this section we will study the attractivity of Eq.(2.1). If x̄n is a positive

solution for Eq.(2.1) we are interested in finding sufficient conditions such

that this solution attracts all the positive solutions xn of the equation, which

means that

xn → x̄n.

Let

yn =
xn
x̄n
, n = −1, 0, 1, ....

From this we get

xn = x̄nyn.

Substituting this value in Eq.(2.1) we get

x̄n+1yn+1 = pn +
x̄n−1yn−1

x̄nyn
.

yn+1 =
pn + x̄n−1

x̄n

yn−1

yn

x̄n+1

=
pn + x̄n−1

x̄n

yn−1

yn

pn + x̄n−1

x̄n

.

So we get

yn+1 =
pn + x̄n−1

x̄n

yn−1

yn

pn + x̄n−1

x̄n

. (2.9)

Lemma 2.3.1 [7] Let x̄n be a positive solution of Eq.(2.1). Then the fol-

lowing are true.

(i) Eq.(2.9) has a positive equilibrium solution ȳ = 1.

(ii) If for some n, yn−1 < yn, then yn+1 < 1. Likewise, if for some n,

yn−1 ≥ yn, then yn+1 ≥ 1.

(iii) Every semicycle, except perhaps the first, of an oscillatory solution of

Eq.(2.9) consists of exactly one term.

Proof. (i)

y =
pn + x̄

x̄
y
y

pn + x̄
x̄

= 1.
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So Eq.(2.9) has a positive equilibrium solution which is 1.

(ii) Assume that for some n, yn−1 < yn so yn−1

yn
< 1. We need to show that

yn+1 < 1. Now,

yn+1 =
pn + x̄n−1

x̄n

(
yn−1

yn

)
pn + x̄n−1

x̄n

<
pn + x̄n−1

x̄n
(1)

pn + x̄n−1

x̄n

=
pn + x̄n−1

x̄n

pn + x̄n−1

x̄n

= 1.

So yn+1 < 1.

In a similar method we can prove the second part. Assume that yn−1 ≥ yn,

as a consequence yn−1

yn
≥ 1. Now,

yn+1 =
pn + x̄n−1

x̄n

(
yn−1

yn

)
pn + x̄n−1

x̄n

≥
pn + x̄n−1

x̄n
(1)

pn + x̄n−1

x̄n

=
pn + x̄n−1

x̄n

pn + x̄n−1

x̄n

= 1.

So yn+1 ≥ 1.

(iii)We have two cases:

Case1:Assume that yn−1 < 1 and yn ≥ 1, then yn−1

yn
≤ 1 , which implies that

yn+1 =
pn + x̄n−1

x̄n

(
yn−1

yn

)
pn + x̄n−1

x̄n

≤
pn + x̄n−1

x̄n
(1)

pn + x̄n−1

x̄n

=
pn + x̄n−1

x̄n

pn + x̄n−1

x̄n

= 1.

Consequently, the positive semicycle contains only one term.

Case2:Assume that yn−1 > 1 and yn ≤ 1, then yn−1

yn
≥ 1 , which implies that

yn+1 =
pn + x̄n−1

x̄n

(
yn−1

yn

)
pn + x̄n−1

x̄n

≥
pn + x̄n−1

x̄n
(1)

pn + x̄n−1

x̄n

=
pn + x̄n−1

x̄n

pn + x̄n−1

x̄n

= 1.

Consequently, the negative semicycle contains only one term.

According to the two cases every semicycle except possibly the first one

consists of only one term.

Lemma 2.3.2 Every nonoscillatory solution to Eq.(2.9) converges to 1.

Proof. Let {yn} be a nonoscillatory solution of Eq.(2.9). We have two

possibilities either

yn ≤ 1 or yn > 1, for n ≥ N0.
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Without loss of generality assume that

yn > 1 for n ≥ N0.

Obviously yn−1 > yn, for n ≥ N0. To prove this assume the contrary, in other

words assume that there exist k > N0 such that yk−1 ≤ yk, so yk−1

yk
≤ 1, then

we have

yk+1 =
pk + x̄k−1

x̄k

(
yk−1

yk

)
pk + x̄k−1

x̄k

≤
pk + x̄k−1

x̄n
(1)

pk + x̄k−1

x̄k

=
pk + x̄k−1

x̄k

pk + x̄k−1

x̄k

= 1.

This gives that yk+1 ≤ 1 which contradicts the assumption. As a result,

yn−1 > yn. It’s clear that {yn} is decreasing and bounded below by 1, so it

converges . Assume that limn→∞ yn = l, we need to prove that l = 1.

lim
n→∞

yn−1

yn
=

limn→∞ yn−1

limn→∞ yn
=
l

l
= 1.

Then, for ε > 0 and for sufficiently large n we have∣∣∣∣yn−1

yn
− 1

∣∣∣∣ < ε.

Then,

|yn+1 − 1| =

∣∣∣∣∣pn + x̄n−1

x̄n

yn−1

yn

pn + x̄n−1

x̄n

− 1

∣∣∣∣∣ =

∣∣∣∣∣pn + x̄n−1

x̄n

yn−1

yn
− pn − x̄n−1

x̄n

pn + x̄n−1

x̄n

∣∣∣∣∣
=

∣∣∣∣∣
x̄n−1

x̄n

yn−1

yn
− x̄n−1

x̄n

pn + x̄n−1

x̄n

∣∣∣∣∣ =

∣∣∣∣∣
x̄n−1

x̄n

pn + x̄n−1

x̄n

∣∣∣∣∣
∣∣∣∣yn−1

yn
− 1

∣∣∣∣ < ∣∣∣∣yn−1

yn
− 1

∣∣∣∣ < ε.

Now, for n ≥ N0

|yn+1 − 1| < ε.

Consequently,

lim
n→∞

yn = 1.

Theorem 2.3.1 [7] Assume that

p > 1 and q < p(p− 1) + 1,

and let {x̄} be a particular positive solution of Eq.(2.1). Then for all positive

solutions {xn} of Eq.(2.1),

xn → x̄n.
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Proof. If xn → x̄n then limn→∞ yn = limn→∞
xn
x̄n

= 1, where {yn} satisfies

Eq.(2.9). It is enough to show that limn→∞ yn = 1. In this theorem we will

focus on the case where {yn} oscillates about the equilibrium solution 1, since

the other case was studied in the last Lemma.

Let’s consider the function

g(p, t, s) =
p+ ts

p+ t
, (2.10)

for p, s, t > 0.

∂g

∂p
=

(p+ t)(1)− (p+ ts)(1)

(p+ t)2
=

(t− ts)
(p+ t)2

=
t(1− s)
(p+ t)2

,

and

∂g

∂t
=

(p+ t)s− (p+ ts)(1)

(p+ t)2
=
ps+ ts− p− ts

(p+ t)2
=

ps− p
(p+ t)2

=
p(s− 1)

(p+ t)2
.

From these derivatives we conclude that

(1)g(p, t, s) is increasing in p for s < 1.

(2)g(p, t, s) is decreasing in p for s > 1.

(3)g(p, t, s) is increasing in t for s > 1.

(4)g(p, t, s) is decreasing in t for s < 1.

Without loss of generality, there exists an integer N0 such that

y2k < 1 and y2k+1 ≥ 1 for k ≥ N0.

This assumption is based on the fact that all semicycles excluding the first

have only one term. Now, let

γ = lim sup
n→∞

yn and η = lim inf
n→∞

yn.

From Eq.(2.9) and Eq.(2.10), we have

y2k+1 = g(p2k,
x̄2k−1

x̄2k

,
y2k−1

y2k

)

In addition, and with reference to Lemma (2.1.2), for ε > 0 and k sufficiently

large we have y2k−1

y2k
> 1, p2k > p− ε and x̄2k−1

x̄2k
≤ µ+ε

λ−ε , recalling that

λ = lim inf
n→∞

xn and µ = lim sup
n→∞

xn.
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It is obvious that y2k+1 is increasing in x̄2k−1

x̄2k
and decreasing in p2k when

y2k−1

y2k
> 1. Then,

y2k+1 ≤ g(p− ε, µ+ ε

λ− ε
,
y2k−1

y2k

)

=
p− ε+ µ+ε

λ−ε
y2k−1

y2k

p− ε+ µ+ε
λ−ε

≤
p− ε+ µ+ε

λ−ε
γ+ε
η−ε

p− ε+ µ+ε
λ−ε

.

Hence,

γ = lim sup
n→∞

y2k+1 ≤
p− ε+ µ+ε

λ−ε
γ+ε
η−ε

p− ε+ µ+ε
λ−ε

.

Depending on Lemma 2.1.2, it is true that µ
λ
≤ q−1

p−1
, ε > 0 is arbitrary, so

γ ≤
p+ µ

λ
γ
η

p+ µ
λ

≤
p+ q−1

p−1
γ
η

p+ q−1
p−1

=

pη
η

+ q−1
p−1

γ
η

p+ q−1
p−1

=
pη + q−1

p−1
γ

η
(
p+ q−1

p−1

) .
Then,

γη ≤
pη + q−1

p−1
γ

p+ q−1
p−1

=
pη

p+ q−1
p−1

+

q−1
p−1

γ

p+ q−1
p−1

. (2.11)

Similarly,

y2k+2 = g(p2k+1,
x̄2k

x̄2k+1

,
y2k

y2k+1

),

for ε > 0 and k sufficiently large we have y2k

y2k+1
< 1, then y2k+2 is decreasing

in x̄2k

x̄2k+1
and increasing in p2k+1, also we have p2k+1 > p− ε and x̄2k

x̄2k+1
≤ µ+ε

λ−ε .
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Hence

y2k+2 =
p2k+1 + x̄2k

x̄2k+1

y2k

y2k+1

p2k+1 + x̄2k

x̄2k+1

≥ g(p− ε, µ+ ε

λ− ε
,
y2k

y2k+1

)

=
p− ε+ µ+ε

λ−ε
y2k

y2k+1

p− ε+ µ+ε
λ−ε

≥
p− ε+ µ+ε

λ−ε
η−ε
γ+ε

p− ε+ µ+ε
λ−ε

.

η = lim inf
k→∞

y2k+1 ≥
p− ε+ µ+ε

λ−ε
η−ε
γ+ε

p− ε+ µ+ε
λ−ε

.

ε > 0 is arbitrary and according to Lemma 2.1.2 µ
λ
≤ q−1

p−1
, then

η ≥
p+ q−1

p−1
η
γ

p+ q−1
p−1

=

pγ
γ

+ q−1
p−1

η
γ

p+ q−1
p−1

=
pγ + q−1

p−1
η

γ
(
p+ q−1

p−1

) .
Hence,

γη ≥
pγ + q−1

p−1
η

p+ q−1
p−1

=
pγ

p+ q−1
p−1

+

q−1
p−1

η

p+ q−1
p−1

. (2.12)

From Eq.(2.11) and Eq.(2.12) we have

pγ

p+ q−1
p−1

+

q−1
p−1

η

p+ q−1
p−1

≤ γη ≤ pη

p+ q−1
p−1

+

q−1
p−1

γ

p+ q−1
p−1

.

Let

a =
p

p+ q−1
p−1

, b =

q−1
p−1

p+ q−1
p−1

.

Hence,

aγ + bη ≤ γη ≤ aη + bγ. (2.13)
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Then,

(a− b)γ ≤ (a− b)η

a− b =
p

p+ q−1
p−1

−
q−1
p−1

p+ q−1
p−1

=
p− q−1

p−1

p+ q−1
p−1

=

p(p−1)−q+1
p−1

p(p−1)+q−1
p−1

=
p(p− 1)− q + 1

p(p− 1) + q − 1
> 0,

since p > 1 and q < p(p − 1) + 1, so γ ≤ η and η ≤ γ. Hence γ = η and

limn→∞ yn = limn→∞
xn
x̄n

= 1. Consequently,

xn → x̄n.

2.4 Applications

In this section we aim to show some applications of the results discussed

previously.

Definition 2.4.1 [7] We say that {pn} is periodic with prime period k if k

is the smallest integer such that

pn+k = pn for n = −1, 0, ....

Assume that {pn} is periodic with prime period k.

p = lim inf
n→∞

pn,

and

q = lim sup
n→∞

pn.

Lemma 2.4.1 [7] A necessary condition for the existence of a periodic solu-

tion {xn} of Eq.(2.1) with prime period k is that {pn} is periodic with period

k.

Proof. Assume that the solution {xn} is a periodic solution with prime

period k, this means that xn+k = xn, for n = −1, 0, ....

xn+k+1 = pn+k +
xn+k−1

xn+k

.
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Then,

pn+k = xn+k+1 −
xn+k−1

xn+k

= xn+1 −
xn−1

xn
= pn,

so we obtained that pn+k = pn, which means that pn is periodic with period

k.

Theorem 2.4.1 [7] Assume that {pn} is periodic with prime period k, and

let 1 < p < q. Then the following statements are true:

(i) There exists a positive periodic solution {x̄n} of Eq.(2.1) with prime

period k.

(ii) If p > 1 and q < p(p− 1) + 1, then the periodic solution {x̄n} is unique

and attracts all positive solutions of Eq.(2.1), that is,

lim
n→∞

xn
x̄n

= 1 (2.14)

for all positive solutions {xn} of Eq.(2.1).

Proof. (i)We need to show that Eq.(2.1) has a periodic solution with period

k, it suffices to show that the following system has a positive solution:

x1 = pk + xk−1

xk

x2 = p1 + xk
x1

x3 = p2 + x1

x2

...

xk = pk−1 + xk−2

xk−1

Define a function F : Rk
+ → Rk

+ such that

F (u1, ..., uk) =

(
pk +

uk−1

uk
, p1 +

uk
u1

, ..., pk−1 +
uk−2

uk−1

)
.



2.4 Applications 33

Also define an interval I such that I = [pq−1
q−1

, pq−1
p−1

]. Now, we need to show

that Ik is invariant under the function F . If u1, ..., uk ∈ I, we have

pi +
uj
ui
≤ q +

pq−1
p−1

pq−1
q−1

= q +
q − 1

p− 1

=
pq − q + q − 1

p− 1

=
pq − 1

p− 1
,

for i = 1, ..., k, j = (i− 1) mod k,

since the above system is periodic of period k,

and

pi +
uj
ui
≥ p+

pq−1
q−1

pq−1
p−1

= p+
p− 1

q − 1

=
pq − p+ p− 1

q − 1

=
pq − 1

q − 1
,

for i = 1, ..., k, for j = (i− 1) mod k.

since the above system is periodic of period k.

So pi +
uj
ui
∈ I for i = 1, ..., k, j = (i− 1) mod k. So Ik is invariant under

the function F , in other words F : Ik → Ik, it is obvious that F is continuous

on Ik, and Ik is convex and compact set. Using Theorem 2.0.5, F has a fixed

point in Ik.

Assume that the fixed point of F is (ū1, ..., ūk) ∈ Ik. Define the sequence

{x̄} by

x̄−1 = ūk−1, x̄0 = ūk and x̄mk+i = ūi, for i = 1, ..., k, m = 0, 1, ....

It is clear that the sequence {x̄n} satisfies Eq.(2.1) and is periodic with period

k.
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(ii)Assume that p > 1 and q < p(p− 1) + 1 and {pn} is periodic with prime

period k, then

p = lim inf
n→∞

pn = min
1≤i≤k

{pi}, and q = lim sup
n→∞

pn = max
1≤i≤k

{pi}.

According to Theorem 2.3.1, limn→∞
xn
x̄n

= 1 is satisfied for any solution {xn}
of the Eq.(2.1), it remains to prove the uniqueness of the periodic solution

{x̄n}. Assume that {yn} is another periodic solution of Eq.(2.1)with period

k and different from {xn}, since {yn} is periodic with period k then

yn+k = yn, n = −1, 0, 1, ....

Since the two solutions are different from each other there exists i such that

ynk+i

x̄nk+i

=
yi
x̄i
6= 1.

But this contradicts the conclusion of the theorem which states that

limn→∞
yn
x̄n

= 1, then the solution is unique.

Corollary 2.4.1 [7] Assume that {pn} is a convergent sequence and

lim
n→∞

pn = p > 1.

Then every solution {xn} of Eq.(2.1) is convergent and

lim
n→∞

xn = p+ 1.

Proof. {pn} is bounded so {xn} is bounded and persists according to Lemma

2.1.1.

Recalling that

λ = lim inf
n→∞

xn and µ = lim sup
n→∞

xn.

And

p = lim inf
n→∞

pn and q = lim sup
n→∞

pn.

By Lemma 2.1.2,
pq − 1

q − 1
≤ λ ≤ µ ≤ pq − 1

p− 1

Now, pn is convergent so p = lim infn→∞ pn = lim supn→∞ pn = q. Then

p+ 1 =
p2 − 1

p− 1
≤ λ ≤ µ ≤ p2 − 1

p− 1
= p+ 1

So we have that λ = µ = p+ 1. Hence, limn→∞ xn = p+ 1.



Chapter 3

On the Difference Equation

xn+1 = An +
x
p
n−1
x
q
n

This chapter is dedicated to study properties such as asymptotic behavior

of the positive solutions, periodicity, and stability of equation

xn+1 = An +
xpn−1

xqn
, n = 0, 1, ..., (3.1)

where An is a positive bounded sequence, the initial conditions x−1, x0 are

positive constants, and p, q ∈ (0,∞).

The same equation were studied in papers [16], [17], [19].

3.1 Asymptotic behavior of the positive so-

lutions

We aim in this section to find conditions so that if x̄n is a fixed solution

of the equation

xn+1 = An +
xpn−1

xqn
, n = 0, 1, ...,

then all solutions of (3.1) tend to the fixed solution x̄n. Let

yn =
xn
x̄n
, n = −1, 0, 1, .... (3.2)
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Consequently,

yn+1 =
xn+1

x̄n+1

, n = −1, 0, 1, ....

From (3.1) we get

yn+1 =
An +

xpn−1

xqn

An +
x̄pn−1

x̄qn

.

Relation (3.2) gives that xn−1 = x̄n−1yn−1 and xn = x̄nyn, then

yn+1 =
An +

x̄pn−1

x̄qn

ypn−1

yqn

An +
x̄pn−1

x̄qn

. (3.3)

Lemma 3.1.1 [16] Let yn be a particular positive solution of (3.3).

(a)Suppose that there exists an m ∈ {0, 1, 2, ...} such that

y2m−1 ≥ 1, y2m < 1. (3.4)

Then

yp2n−1 > 1, yq2n−1 > 1, yp2n < 1, yq2n < 1, n = m+ 1,m+ 2, .... (3.5)

(b)Suppose that there exists an m ∈ {0, 1, 2, ...} such that

y2m−1 < 1, y2m ≥ 1. (3.6)

Then

yp2n−1 < 1, yq2n−1 < 1, yp2n > 1, yq2n > 1, n = m+ 1,m+ 2, .... (3.7)

Proof. In both cases (a) and (b) we will use mathematical induction.

(a) We have the relation

yn+1 =
An +

x̄pn−1

x̄qn

ypn−1

yqn

An +
x̄pn−1

x̄qn

.

Now, for n = m+ 1 we have

ym+2 =
Am+1 + x̄pm

x̄qm+1

ypm
yqm+1

Am+1 + x̄pm
x̄qm+1

. (3.8)
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If we replace m by 2m− 1, we get

y2m+1 =
A2m +

x̄p2m−1

x̄q2m

yp2m−1

yq2m

A2m +
x̄p2m−1

x̄q2m

.

We assumed that y2m−1 ≥ 1, y2m < 1, and yp2m−1 ≥ 1, yq2m < 1 where p, q are

positive constants, then
yp2m−1

yq2m
> 1. So

y2m+1 =
A2m +

x̄p2m−1

x̄q2m

(
yp2m−1

yq2m

)
A2m +

x̄p2m−1

x̄q2m

>
A2m +

x̄p2m−1

x̄q2m
(1)

A2m +
x̄p2m−1

x̄q2m

=
A2m +

x̄p2m−1

x̄q2m

A2m +
x̄p2m−1

x̄q2m

= 1.

So y2m+1 > 1, if we substitute n − 1 in place of m we get y2n−1 > 1, which

concludes that yq2n−1 > 1 and yp2n−1 > 1.

If we replace m by 2m in (3.8), we get

y2m+2 =
A2m+1 +

x̄p2m
x̄q2m+1

yp2m
yq2m+1

A2m+1 +
x̄p2m
x̄q2m+1

.

We are given that y2m < 1 and from above we have y2m+1 > 1, this implies

that yp2m < 1 and yq2m+1 > 1, as a result
yp2m
yq2m+1

< 1.

Thus

y2m+2 =
A2m+1 +

x̄p2m
x̄q2m+1

(
yp2m
yq2m+1

)
A2m+1 +

x̄p2m
x̄q2m+1

<
A2m+1 +

x̄p2m
x̄q2m+1

(1)

A2m+1 +
x̄p2m
x̄q2m+1

=
A2m+1 +

x̄p2m
x̄q2m+1

A2m+1 +
x̄p2m
x̄q2m+1

= 1.
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As a result, y2m+2 < 1. It is known that m = n − 1, so we have y2n < 1,

which gives yp2n < 1, yq2n < 1.

For n = m+ 1 we proved that

yp2n−1 > 1, yq2n−1 > 1, yp2n < 1, yq2n < 1.

Assume the result holds for n = m+k−1, where k is an integer greater than

2, from assumption we know that

yp2(m+k−1)−1 > 1, yq2(m+k−1)−1 > 1, yp2(m+k−1) < 1, yq2(m+k−1) < 1.

Which means that

yp2(m+k)−3 > 1, yq2(m+k)−3 > 1, yp2(m+k)−2 < 1, yq2(m+k)−2 < 1.

We need to show that the result holds for n = m + k. If we substitute

2(m+ k)− 2 in place of n in (3.3) we get

y2(m+k)−1 =
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

yp
2(m+k)−3

yq
2(m+k)−2

A2(m+k)−2 +
x̄p

2(m+k)−3

x̄q
2(m+k)−2

.

From assumption we have yp2(m+k)−3 > 1 and yq2(m+k)−2 < 1

then
yp
2(m+k)−3

yq
2(m+k)−2

> 1.

Then

y2(m+k)−1 =
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

(
yp
2(m+k)−3

yq
2(m+k)−2

)
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

>
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

(1)

A2(m+k)−2 +
x̄p

2(m+k)−3

x̄q
2(m+k)−2

= 1.

So we conclude that yp2(m+k)−1 > 1 and yq2(m+k)−1 > 1, which gives that

yp2n−1 > 1 and yq2n−1 > 1.

Now, if we replace n by 2(m+ k)− 1 in (3.3) we get the following equation

y2(m+k) =
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

yp
2(m+k)−2

yq
2(m+k)−1

A2(m+k)−1 +
x̄p

2(m+k)−2

x̄q
2(m+k)−1

.
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From the assumption we have that yp2(m+k)−2 < 1 and from the previous

discussion we have yq2(m+k)−1 > 1 so
yp
2(m+k)−2

yq
2(m+k)−1

< 1.

Then

y2(m+k) =
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

(
yp
2(m+k)−2

yq
2(m+k)−1

)
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

<
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

(1)

A2(m+k)−1 +
x̄p

2(m+k)−2

x̄q
2(m+k)−1

= 1.

So y2(m+k) < 1, as a result yp2(m+k) < 1 and yq2(m+k) < 1 and yp2n < 1, yq2n < 1

since n = m+ k.

Then we conclude that

yp2n−1 > 1, yq2n−1 > 1, yp2n < 1, yq2n < 1, n = m+ 1,m+ 2, ....

(b) In a similar way we can prove the second part of this lemma. Assume

(3.6). Now, replace n by m+ 1 in the equation

yn+1 =
An +

x̄pn−1

x̄qn

ypn−1

yqn

An +
x̄pn−1

x̄qn

.

To get

ym+2 =
Am+1 + x̄pm

x̄qm+1

ypm
yqm+1

Am+1 + x̄pm
x̄qm+1

.

Now, replace m by 2m− 1 to get

y2m+1 =
A2m +

x̄p2m−1

x̄q2m

yp2m−1

yq2m

A2m +
x̄p2m−1

x̄q2m

.

We are given that y2m−1 < 1, y2m ≥ 1, which gives that
yp2m−1

yq2m
< 1. Now,

y2m+1 =
A2m +

x̄p2m−1

x̄q2m

(
yp2m−1

yq2m

)
A2m +

x̄p2m−1

x̄q2m

<
A2m +

x̄p2m−1

x̄q2m
(1)

A2m +
x̄p2m−1

x̄q2m

= 1.
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So y2m+1 < 1, substitute n − 1 in place of m to obtain y2n−1 < 1, then

yp2n−1 < 1 and yq2n−1 < 1.

If we replace m by 2m in (3.8) we get

y2m+2 =
A2m+1 +

x̄p2m
x̄q2m+1

yp2m
yq2m+1

A2m+1 +
x̄p2m
x̄q2m+1

.

From the assumption we have that y2m ≥ 1 and it is true that y2m+1 < 1

from the previous discussion, so
yp2m
yq2m+1

> 1. Then we have

y2m+2 =
A2m+1 +

x̄p2m
x̄q2m+1

(
yp2m
yq2m+1

)
A2m+1 +

x̄p2m
x̄q2m+1

>
A2m+1 +

x̄p2m
x̄q2m+1

(1)

A2m+1 +
x̄p2m
x̄q2m+1

= 1.

So we conclude that y2m+2 > 1, if we write this in terms of n we get y2n > 1,

which implies that yp2n > 1 and yq2n > 1.

So for n = m+ 1 we have

yp2n−1 < 1, yq2n−1 < 1, yp2n > 1, yq2n > 1.

Now, assume that the result holds for n = m+ k − 1, where m+ k − 1 is an

integer and k is an integer greater than 2, so we have

yp2(m+k−1)−1 < 1, yq2(m+k−1)−1 < 1, yp2(m+k−1) > 1, yq2(m+k−1) > 1.

Which is equivalent to

yp2(m+k)−3 < 1, yq2(m+k)−3 < 1, yp2(m+k)−2 > 1, yq2(m+k)−2 > 1.

We aim to show that the result also holds for n = m+ k, where m+ k is an

integer.

Now, replace n by 2(m+ k)− 2 in (3.3) to get

y2(m+k)−1 =
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

yp
2(m+k)−3

yq
2(m+k)−2

A2(m+k)−2 +
x̄p

2(m+k)−3

x̄q
2(m+k)−2

.
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According to the assumption it is true that yp2(m+k)−3 < 1 and yq2(m+k)−2 > 1

resulting in
yp
2(m+k)−3

yq
2(m+k)−2

< 1, then

y2(m+k)−1 =
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

(
yp
2(m+k)−3

yq
2(m+k)−2

)
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

<
A2(m+k)−2 +

x̄p
2(m+k)−3

x̄q
2(m+k)−2

(1)

A2(m+k)−2 +
x̄p

2(m+k)−3

x̄q
2(m+k)−2

= 1.

This implies that y2n−1 < 1 since n = m+k, also we conclude that yp2n−1 < 1

and yq2n−1 < 1.

If we take n = 2(m+ k)− 1 in (3.3) we get

y2(m+k) =
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

yp
2(m+k)−2

yq
2(m+k)−1

A2(m+k)−1 +
x̄p

2(m+k)−2

x̄q
2(m+k)−1

.

The assumption gives that yp2(m+k)−2 > 1 and the previous discussion gives

that yq2(m+k)−1 < 1, so
yp
2(m+k)−2

yq
2(m+k)−1

> 1, then we have

y2(m+k) =
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

(
yp
2(m+k)−2

yq
2(m+k)−1

)
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

>
A2(m+k)−1 +

x̄p
2(m+k)−2

x̄q
2(m+k)−1

(1)

A2(m+k)−1 +
x̄p

2(m+k)−2

x̄q
2(m+k)−1

= 1.

We conclude that y2(m+k) > 1, in terms of n we have that y2n > 1, then

yp2n > 1 and yq2n > 1.

Then we conclude that

yp2n−1 < 1, yq2n−1 < 1, yp2n > 1, yq2n > 1, n = m+ 1,m+ 2, ....
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Lemma 3.1.2 [16] Consider the function

F (x, y, z) =
z + xy

z + x
, x, y, z > 0. (3.9)

Then the following statements are true:

(i) F is an increasing function in x for y ∈ (1,∞) and z ∈ (0,∞);

(ii) F is a decreasing function in x for y ∈ (0, 1);

(iii) F is an increasing function in y for any x, z ∈ (0,∞);

(iv) F is an increasing function in z for any y ∈ (0, 1) and x ∈ (0,∞);

(v) F is a decreasing function in z for any y ∈ (1,∞).

Proof. F (x, y, z) = z+xy
z+x

.

∂F

∂x
=
z(y − 1)

(z + x)2
.

∂F

∂y
=

x

z + x
.

∂F

∂z
=
x(1− y)

(z + x)2
.

(i) ∂F
∂x

= z(y−1)
(z+x)2 = 0 if and only if z = 0 or y = 1 then F is increasing in x

for y ∈ (1,∞) and z ∈ (0,∞).

(ii) It is obvious from (i) that F is decreasing in x for y ∈ (0, 1).

(iii) ∂F
∂y

= x
z+x

= 0 if and only if x = 0 then F is increasing in y for

x, z ∈ (0,∞).

(iv) ∂F
∂z

= x(1−y)
(z+x)2 = 0 if and only if x = 0 or y = 1 then F is increasing in z

for y ∈ (0, 1) and x ∈ (0,∞).

(v) It is obvious from (iv) that F is decreasing in z for y ∈ (1,∞).
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Lemma 3.1.3 [16] Suppose that An is a bounded sequence such that

0 < m = lim inf
n→∞

An, M = lim sup
n→∞

An <∞. (3.10)

Suppose also that

0 < p < 1. (3.11)

Then every positive solution of Eq.(3.1) is bounded and persists.

Proposition 3.1.1 [16] Consider Eq.(3.1) where An is bounded positive se-

quence such that (3.10) holds. Suppose also that

0 < p+ q < 1, q > p. (3.12)

Let x̄n be a fixed solution of Eq.(3.1) and xn be an arbitrary solution of

Eq.(3.1). Then

lim
n→∞

yn = 1, (3.13)

where yn is defined in (3.2).

Proof. Using Lemma(3.1.3) and relation(3.2)

0 < η = lim inf
n→∞

yn, θ = lim sup
n→∞

yn <∞.

0 < k1 = lim inf
n→∞

x̄n, k2 = lim sup
n→∞

x̄n <∞. (3.14)

We have two cases

Case 1 We suppose that there exists an m ∈ {1, 2, 3, ...} such that either

(3.4) or (3.6) holds. Assume that (3.4) holds. We obtain for n ≥ m

y2n+1 =
A2n +

x̄p2n−1

x̄q2n

yp2n−1

yq2n

A2n +
x̄p2n−1

x̄q2n

, y2n+2 =
A2n+1 +

x̄p2n
x̄q2n+1

yp2n
yq2n+1

A2n+1 +
x̄p2n
x̄q2n+1

. (3.15)
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Let’s consider the first equation

y2n+1 =
A2n +

x̄p2n−1

x̄q2n

yp2n−1

yq2n

A2n +
x̄p2n−1

x̄q2n

=
A2n

yq2n
yq2n

+
x̄p2n−1

x̄q2n

yp2n−1

yq2n

A2n +
x̄p2n−1

x̄q2n

=

1
yq2n

(A2ny
q
2n +

x̄p2n−1

x̄q2n
yp2n−1)

A2n +
x̄p2n−1

x̄q2n

=
A2ny

q
2n +

x̄p2n−1

x̄q2n
yp2n−1

yq2n(A2n +
x̄p2n−1

x̄q2n
)
.

y2n+1y
q
2n =

A2ny
q
2n +

x̄p2n−1

x̄q2n
yp2n−1

A2n +
x̄p2n−1

x̄q2n

.

We assumed that (3.4) is satisfied, as a result yp2n−1 > 1, yq2n < 1 implying

that
yp2n−1

yq2n
> 1.

By Lemma 3.1.2 y2n+1 is decreasing in An and increasing in
x̄p2n−1

x̄q2n
, and so we

have

θ ≤ mηq + kθp

ηq(m+ k)
then θηq ≤ mηq + kθp

m+ k
, k =

kp2
kq1
.

Now,

y2n+2 =
A2n+1 +

x̄p2n
x̄q2n+1

yp2n
yq2n+1

A2n+1 +
x̄p2n
x̄q2n+1

=
A2n+1

yq2n+1

yq2n+1
+

x̄p2n
x̄q2n+1

yp2n
yq2n+1

A2n+1 +
x̄p2n
x̄q2n+1

=

1
yq2n+1

(A2n+1y
q
2n+1 +

x̄p2n
x̄q2n+1

yp2n)

A2n+1 +
x̄p2n
x̄q2n+1

=
A2n+1y

q
2n+1 +

x̄p2n
x̄q2n+1

yp2n

yq2n+1(A2n+1 +
x̄p2n
x̄q2n+1

)
.
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We assumed that (3.4) holds, which means that yp2n−1 > 1 and yq2n < 1, so
yp2n−1

yq2n
> 1, which implies that

y2n+1 =
A2n +

x̄p2n−1

x̄q2n

(
yp2n−1

yq2n

)
A2n +

x̄p2n−1

x̄q2n

>
A2n +

x̄p2n−1

x̄q2n
(1)

A2n +
x̄p2n−1

x̄q2n

= 1,

which gives that yq2n+1 > 1, from the assumption we get that yp2n < 1 then
yp2n
yq2n+1

< 1. By Lemma 3.1.2 y2n+2 is increasing in A2n+1 and decreasing in

x̄p2n
x̄q2n+1

.

Thus we have

η ≥ mθq + kηp

θq(m+ k)
then ηθq ≥ mθq + kηp

m+ k
, k =

kp2
kq1
.

Now,

θηq ≤ mηq + kθp

m+ k
gives θηq(m+ k) ≤ mηq + kθp.

And the equation

ηθq ≥ mθq + kηp

m+ k
gives θqη(m+ k) ≥ mθq + kηp.

Hence

m+ k ≥ mθq + kηp

θqη
.

θηq(m+ k) ≤ mηq + kθp.

Then

θηq(
mθq + kηp

θqη
) ≤ mηq + kθp.

Thus,
θηqmθq

θqη
+
θηqkηp

θqη
≤ mηq + kθp.

Consequently,

mθηq−1 + kθ1−qηp+q−1 ≤ mηq + kθp.

Multiplying both sides of the preceding inequality by θq−1 to get

mθqηq−1 + kηp+q−1 ≤ mθq−1ηq + kθp+q−1. (3.16)
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And this implies that

mθqηq−1 −mθq−1ηq ≤ kθp+q−1 − kηp+q−1.

mθq−1ηq−1(θ − η) ≤ k(ηθ)p+q−1(η1−p−q − θ1−p−q).

Since η ≤ θ and p+ q < 1, it is evident that

mθq−1ηq−1(θ − η) ≤ k(ηθ)p+q−1(η1−p−q − θ1−p−q) ≤ 0 (3.17)

And so we have that η = θ, in other words lim inf
n→∞

yn = lim sup
n→∞

yn, which

implies that lim
n→∞

yn exists.

Now, to determine the exact value of the limit, we have

y2n+1 =
A2n +

x̄p2n−1

x̄q2n

yp2n−1

yq2n

A2n +
x̄p2n−1

x̄q2n

Using (3.5)
yp2n−1

yq2n
> 1, so

y2n+1 >
A2n +

x̄p2n−1

x̄q2n
(1)

A2n +
x̄p2n−1

x̄q2n

= 1.

Thus as n goes to ∞, limn→∞ yn ≥ 1. Also we have

y2n+2 =
A2n+1 +

x̄p2n
x̄q2n+1

yp2n
yq2n+1

A2n+1 +
x̄p2n
x̄q2n+1

Using (3.5) yp2n < 1 and from above we have that yq2n+1 > 1 so
yp2n
yq2n+1

< 1,

then

y2n+2 <
A2n+1 +

x̄p2n
x̄q2n+1

(1)

A2n+1 +
x̄p2n
x̄q2n+1

= 1.

So as n goes to ∞, limn→∞ yn ≤ 1. We conclude that lim
n→∞

yn = 1.

The same procedure works if (3.6)holds.

Case 2 Suppose now neither (3.4) nor (3.6) holds. Now from Lemma 3.1.1

we get that

yn < 1, or yn ≥ 1, n ≥ −1. (3.18)
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Without loss of generality assume that

yn < 1, n ≥ −1. (3.19)

Claim

yqn+1 > ypn, n ≥ −1. (3.20)

To prove this claim assume the contrary, in other words there exists a µ ≥ −1

such that

yqµ+1 ≤ ypµ. (3.21)

yµ+2 =
Aµ+1 +

x̄pµ
x̄qµ+1

ypµ
yqµ+1

Aµ+1 +
x̄pµ
x̄qµ+1

.

Now,
ypµ
yqµ+1
≥ 1, which implies that

yµ+2 =
Aµ+1 +

x̄pµ
x̄qµ+1

ypµ
yqµ+1

Aµ+1 +
x̄pµ
x̄qµ+1

≥
Aµ+1 +

x̄pµ
x̄qµ+1

(1)

Aµ+1 +
x̄pµ
x̄qµ+1

= 1.

Therefore, yµ+2 ≥ 1, which contradicts the assumption in (3.19) so our claim

is true. Now, we are given that q > p in (3.12), and (3.19) gives that yn < 1

for n ≥ −1 so ypn > yqn. From this and (3.20) we get

yqn+1 > ypn > yqn, n ≥ −1.

So

yqn+1 > yqn, n ≥ −1.

As a result

yn+1 > yn, n ≥ −1. (3.22)

Now,

yn+1 =
An +

x̄pn−1

x̄qn

ypn−1

yqn

An +
x̄pn−1

x̄qn

.
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By adding
x̄pn−1

x̄qn
and subtracting this expression from the numerator of the

right hand side of the last equation we get

yn+1 =
An +

x̄pn−1

x̄qn

ypn−1

yqn
+

x̄pn−1

x̄qn
− x̄pn−1

x̄qn

An +
x̄pn−1

x̄qn

.

yn+1 =
An +

x̄pn−1

x̄qn
+

x̄pn−1

x̄qn

ypn−1

yqn
− x̄pn−1

x̄qn

An +
x̄pn−1

x̄qn

.

yn+1 =
An +

x̄pn−1

x̄qn

An +
x̄pn−1

x̄qn

+

x̄pn−1

x̄qn

ypn−1

yqn
− x̄pn−1

x̄qn

An +
x̄pn−1

x̄qn

.

yn+1 = 1 +

x̄pn−1

x̄qn

(
ypn−1

yqn
− 1
)

An +
x̄pn−1

x̄qn

.

Now,

|yn+1 − 1| =

∣∣∣∣∣∣
x̄pn−1

x̄qn

(
ypn−1

yqn
− 1
)

An +
x̄pn−1

x̄qn

∣∣∣∣∣∣ .
|yn+1 − 1| =

x̄pn−1

x̄qn

An +
x̄pn−1

x̄qn

(∣∣∣∣ypn−1

yqn
− 1

∣∣∣∣) .
An is a positive sequence which implies that

|yn+1 − 1| < 1.

∣∣∣∣ypn−1

yqn
− 1

∣∣∣∣ .
Now, by (3.20)

ypn−1

yqn
< 1 and we are given that yn+1 < 1 then

1− yn+1 < 1−
ypn−1

yqn
, then yn+1 >

ypn−1

yqn
. (3.23)

According to (3.19) yn+1 < 1, as n→∞ we have lim
n→∞

yn ≤ 1, that is

lim
n→∞

yn = λ ≤ 1. (3.24)

And we conclude from (3.23) that

yn+1

(
yqn
ypn−1

)
= yn+1y

q
ny
−p
n−1 > 1.
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As n→∞ we have

λq−p+1 ≥ 1. (3.25)

Finally, we conclude from (3.24) and (3.25) that

λ = 1 so lim
n→∞

yn = 1.

3.2 Periodicity and stability

Here we consider sufficient conditions for the existence and the uniqueness

of 2-periodic and 3-periodic solutions for Eq.(3.1) and the convergence of the

positive solutions of (3.1) to the periodic solutions.

Proposition 3.2.1 [16] Consider Eq.(3.1). Then the following statements

are true:

(i) Suppose that An is a positive two-periodic sequence such that

An+2 = An, n = 0, 1, 2, .... (3.26)

Suppose also that 0 < p+ q < 1 and p < q. Then Eq.(3.1) has a unique two

periodic solution and every positive solution of (3.1) tends to the unique two

periodic solution.

(ii)Suppose that An is a positive periodic sequence of period three such that

An+3 = An, n = 0, 1, 2, .... (3.27)

Suppose also that 0 < p+ q < 1 and p < q and there exist a positive number

ε and a θ ∈ (0, 1
2
] such that

(B + ε)p

Cq
< ε,

pq

C2(q+1−p) +
pε

C
< θ,

p

Cq+1−p +
q2ε

Cq+2−p < θ, (3.28)

where

B = max {A0, A1, A2}, C = min {A0, A1, A2}. (3.29)

Then Eq.(3.1) has a unique periodic solution of period three and every positive

solution of (3.1) tends to the unique three periodic solution.
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Proof. (i) At the beginning, we show that (3.1) has a unique 2-periodic

solution. Let xn be a solution of (3.1). Now, xn is two periodic if and only if

the initial values x−1, x0 satisfy

x−1 = x1 = A0 +
xp−1

xq0
, x0 = x2 = A1 +

xp0
xq1
. (3.30)

Let x−1 = x, x0 = y then from previous equation we get

x = A0 +
xp

yq
, y = A1 +

yp

xq
. (3.31)

We prove that (3.31) has a solution (x̄, ȳ), x̄ > 0, ȳ > 0. From the first part

of (3.31) we have that

xp

yq
= x− A0 this gives

yq

xp
=

1

x− A0

.

So we get

y =
x
p
q

(x− A0)
1
q

. (3.32)

From this and the second part of (3.31) we get

y − A1 −
yp

xq
=

x
p
q

(x− A0)
1
q

− A1 −

(
x
p
q

(x−A0)
1
q

)p
xq

=
x
p
q

(x− A0)
1
q

− A1 −
x
p2

q x−q

(x− A0)
p
q

= 0.

So we have

x
p
q

(x− A0)
1
q

− A1 −
x
p2−q2
q

(x− A0)
p
q

= 0. (3.33)

Consider the function

f(x) =
x
p
q

(x− A0)
1
q

− A1 −
x
p2−q2
q

(x− A0)
p
q

. (3.34)

Write f(x) as

f(x) =
1

(x− A0)
p
q

(
x
p
q

(x− A0)
1−p
q

− x
p2−q2
q

)
− A1. (3.35)
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Then

lim
x→A0

f(x) =∞, lim
x→∞

f(x) = −A1. (3.36)

So Eq.(3.34) has a solution x̄ > A0. Then if

ȳ =
x̄
p
q

(x̄− A0)
1
q

we find that the solution x̄n of (3.1) with initial values x−1 = x̄, x0 = ȳ is a

periodic solution of period two.

Finally, using proposition 3.1.1 it is clear that xn is the unique periodic

solution of period two and every positive solution of (3.1) tends to the unique

periodic solution of period two and this is obvious since yn = xn
x̄n

and lim
n→∞

yn =

1 then xn → x̄n.

(ii) xn is a three-periodic solution of (3.1) if

x2 = x−1 = A1 +
xp0
xq1
, x3 = x0 = A2 +

xp1
xq−1

. (3.37)

We set x−1 = x, x0 = y in (3.37) and we consider the system of nonlinear

difference equations

x = A1 +
yp

(h(x, y))q
, y = A2 +

(h(x, y))p

xq
, (3.38)

where h(x, y)=x1=A0 +
xp−1

xq0
=A0 + xp

yq
. We consider the function

H : [A1, A1 + ε]× [A2, A2 + ε]→ R,

such that

H(x, y) = (f(x, y), g(x, y)), f(x, y) = A1+
yp

(h(x, y))q
, g(x, y) = A2+

(h(x, y))p

xq
.

(3.39)

First we prove that the function H is in [A1, A1 + ε]× [A2, A2 + ε].

It is obvious that for all (x, y) ∈ [A1, A1 + ε]× [A2, A2 + ε]

f(x, y) = A1 +
yp

(h(x, y))q
> A1, since

yp

(h(x, y))q
> 0, (3.40)

also we have

g(x, y) = A2 +
(h(x, y))p

xq
> A2, since

(h(x, y))p

xq
> 0. (3.41)
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Moreover, from(3.28), (3.29) and (3.38) and since xp

yq
> 0 we get for (x, y) ∈

[A1, A1 + ε]× [A2, A2 + ε],

f(x, y) = A1 +
yp

(h(x, y))q

= A1 +
yp(

A0 + xp

yq

)q
≤ A1 +

(A2 + ε)p(
A0 + xp

yq

)q
≤ A1 +

(A2 + ε)p

Aq0

≤ A1 +
(B + ε)p

Cq

< A1 + ε.

g(x, y) = A2 +
(h(x, y))p

xq

= A2 +
(A0 + xp

yq
))p

xq

≤ A2 +

(
A0 + (A1+ε)p

Aq2

)p
Aq1

≤ A2 +

(
B + (B+ε)p

Cq

)p
Cq

< A2 +
(B + ε)p

Cq

< A2 + ε.

So we have that

f(x, y) < A1 + ε. (3.42)

g(x, y) < A2 + ε. (3.43)

Which implies that the function H is in [A1, A1 + ε]× [A2, A2 + ε] as needed.
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Now, we need to show that the function H is contraction in [A1, A1 + ε]×
[A2, A2 + ε].

∂f

∂x
=

(h(x, y))q × 0− qyq(h(x, y))q−1 ∂h(x,y)
∂x

(h(x, y))2q

=
−yq(h(x, y))q−1

(h(x, y))2q

pyqxp−1

y2q

=
−pq

yq−px1−p(h(x, y))q+1
.

∂f

∂y
=

(h(x, y))qpyp−1 − qyp(h(x, y))q−1 ∂h(x,y)
∂y

(h(x, y))2q

=
pyp−1h(x, y)q + qyph(x, y)q−1 qxpyq−1

y2q

(h(x, y))2q

=
pyp−1h(x, y)q + q2xpyp−q−1(h(x, y))q−1

(h(x, y))2q

=
p

y1−p(h(x, y))q
+

q2xp

yq−p+1(h(x, y))q+1
.

∂g

∂x
=
pxq(h(x, y))p−1 ∂h(x,y)

∂x
− qxq−1(h(x, y))p

x2q

=
pxq(h(x, y))p−1[py

qxp−1

y2q ]− qxq−1(h(x, y))p

x2q

=
p2(h(x, y))p−1

yqxq−p+1
− q(h(x, y))p

xq+1
.

∂g

∂y
=
pxq(h(x, y))p−1 ∂h(x,y)

∂y
− 0

x2q

=
−pqxp+qyp−1(h(x, y))p−1

x2qy2q

=
−pq

xq−pyq+1(h(x, y))1−p .

We will use

pq

C2(q+1−p) <
pq

C2(q+1−p) +
qε

C
< θ, since

qε

C
> 0.
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Now, ∣∣∣∣∂f∂x
∣∣∣∣ =

∣∣∣∣ −pq
yq−px1−p(h(x, y))q+1

∣∣∣∣
<

pq

Cq−pC1−pCq+1

=
pq

C2q−2p+2

=
pq

C2(q−p+1)
< θ.∣∣∣∣∂f∂y

∣∣∣∣ =

∣∣∣∣ p

y1−p(h(x, y))q
+

q2xp

yq−p+1(h(x, y))q+1

∣∣∣∣
<

p

C1−pCq
+
q2(A1 + ε)p

Cq−p+1Cq+1

<
p

Cq−p+1
+
q2 (B+ε)p

Cq

Cq−p+2

<
p

Cq−p+1
+

q2ε

Cq−p+2
< θ.

∣∣∣∣∂g∂x
∣∣∣∣ =

∣∣∣∣p2(h(x, y))p−1

yqxq−p+1
− q(h(x, y))p

xq+1

∣∣∣∣
<
q
(
A0 + (A1+ε)p

Aq2

)p
Cq+1

+
p2

C2q−p+1A1−p
0

<
q
(
B + (B+ε)p

Cq

)p
Cq+1

+
p2

C2(q−p+1)

<
q(B + ε)p

Cq+1
+

p2

C2(q−p+1)

<
εq

C
+

p2

C2(q−p+1)
< θ.

∣∣∣∣∂g∂y
∣∣∣∣ =

∣∣∣∣ −pq
xp−qyq+1(h(x, y))1−p

∣∣∣∣
<

pq

C2q−p+1A1−p
0

<
pq

C2(q−p+1)
< θ.
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So we conclude that∣∣∣∣∂f∂x
∣∣∣∣ < θ,

∣∣∣∣∂f∂y
∣∣∣∣ < θ,

∣∣∣∣∂g∂x
∣∣∣∣ < θ,

∣∣∣∣∂g∂y
∣∣∣∣ < θ. (3.44)

Moreover, there exist ξi ∈ [A1, A1 + ε], ηi ∈ [A2, A2 + ε], i = 1, 2 such that

for all x1, x2 ∈ [A1, A1 + ε] and y1, y2 ∈ [A2, A2 + ε].

f(x1, y1)− f(x1, y2) =
∂f(x1, η1)

∂y
(y1 − y2),

f(x1, y2)− f(x2, y2) =
∂f(ξ1, y2)

∂x
(x1 − x2),

g(x1, y1)− g(x1, y2) =
∂g(x1, η2)

∂y
(y1 − y2), (3.45)

g(x1, y2)− g(x2, y2) =
∂g(ξ2, y2)

∂x
(x1 − x2).

|f(x1, y1)− f(x2, y2)| = |f(x1, y1)− f(x1, y2) + f(x1, y2)− f(x2, y2)|
≤ |f(x1, y1)− f(x1, y2)|+ |f(x1, y2)− f(x2, y2)|

≤ 2θmax{|x1 − x2|, |y1 − y2|}.

And

|g(x1, y1)− g(x2, y2)| = |g(x1, y1)− g(x1, y2) + g(x1, y2)− g(x2, y2)|
≤ |g(x1, y1)− g(x1, y2)|+ |g(x1, y2)− g(x2, y2)|

≤ 2θmax{|x1 − x2|, |y1 − y2|}.

Thus

max{|f(x1, y1)−f(x2, y2)|, |g(x1, y1)−g(x2, y2)|} ≤ 2θmax{|x1−x2|, |y1−y2|}
(3.46)

Definition 3.2.1 Let (X, d) be a complete metric space. A function

f : X → X is called contraction if there exists k < 1 such that for any x,

y ∈ X
d(f(x), f(y)) ≤ kd(x, y).
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Now, from(3.46) and since θ ∈ (0, 1
2
) the function H is contraction in [A1, A1+

ε]× [A2, A2 + ε].

Theorem 3.2.1 Banach Contraction Principle

If f : X → X is a mapping on a complete metric space (X, d) into itself, and

there exists a number α < 1 such that for any two points x, y ∈ X

d(f(x), f(y)) ≤ αd(x, y).

Then, f has a unique fixed point, and for any x in X the sequence fn(x)

converges to some point.

Hence, according to Banach Contraction Principle there exist a unique

(x̄, ȳ) ∈ [A1, A1 + ε]× [A2, A2 + ε] such that

x̄ = f(x̄, ȳ), ȳ = g(x̄, ȳ).

Therefore the solution xn with initial values x−1 = x̄, x0 = ȳ is periodic

solution of period three. Using proposition (3.1.1) it is obvious that xn is the

unique solution of period three and every positive solution of (3.1) tends to

the unique 3-periodic solution of (3.1) as n→∞.

Proposition 3.2.2 [16] Consider Eq.(3.1)and assume that 0 < p + q < 1,

p < q. Then the following statements are true:

(i) Suppose that

An+2 = An, n = 0, 1, 2, ....

Suppose also that

p

Aq1A
1−p
0

+
p2 + q2

(A1A0)q+1−p +
p

Aq0A
1−p
1

< 1. (3.47)

Then the unique 2-periodic solution of (3.1) is globally asymptotically stable.

(ii) Assume that

An+3 = An, n = 0, 1, 2, ....

And

(B + ε)p

Cq
< ε,

pq

C2(q+1−p) +
pε

C
< θ,

p

Cq+1−p +
q2ε

Cq+2−p < θ,
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where

B = max {A0, A1, A2}, C = min {A0, A1, A2}.

Suppose also that
3pq

C2(p+q−1)
+

p3 + q3

C3(p+q−1)
< 1. (3.48)

Then the unique 3-periodic solution of (3.1) is globally asymptotically stable.

Proof. (i) From proposition(3.2.1) there exists a unique periodic solution

x̄n of period two.

Let

x2n−1 = x̄, x2n = ȳ, n = 0, 1, 2, ....

We have

xn+1 = An +
xpn−1

xqn
.

Since the solution is two periodic we have that

x−1 = x1 = x3 = ... = x2n+1, n = −1, 0, 1, 2, ...,

and

x0 = x2 = x4 = ... = x2n, n = 0, 1, 2, ....

Consequently,

x2n+1 = A0 +
xp2n−1

xq2n
, x2n+2 = A1 +

xp2n
xq2n+1

. (3.49)

Then

x2n+1 = A0 +
x̄p

ȳq
, x2n+2 = A1 +

ȳp

x̄q
.

Now, if we set x2n−1 = zn, x2n = wn in the previous equations we get

zn+1 = A0 +
zpn
wqn
, wn+1 = A1 +

wpn
zqn+1

. (3.50)

Then (x̄, ȳ) is the positive solution of (3.50).

The system

zn+1 = A0 +
zpn
wqn
, wn+1 = A1 +

wpn
zqn+1
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can be written as

zn+1 = A0 +
zpn
wqn
, wn+1 = A1 +

wpn(
A0 + zpn

wqn

)q ,
which can be linearized as

νn+1 = Bνn,

where

B =

(
∂zn+1

∂zn

∂zn+1

∂wn
∂wn+1

∂zn

∂wn+1

∂wn

)
, νn =

(
zn

wn

)

B =


wnpz

p−1
n −0

w2q
n

0−zpnqwq−1
n

w2q
n

0−wpnq
(
A0+

z
p
n
w
q
n

)q−1(
w
q
npz

p−1
n −0

w
2q
n

)
(
A0+

z
p
n
w
q
n

)2q

(
A0+

z
p
n
w
q
n

)q
pwp−1

n −wpnq
(
A0+

z
p
n
w
q
n

)q−1(
0−zpnqw

q−1
n

w
2q
n

)
(
A0+

z
p
n
w
q
n

)2q



=

 p

z1−p
n wqn

−qzpn
wq+1
n

−pq(
A0+

z
p
n
w
q
n

)q+1

wq−pn z1−p
n

p

w1−p
n

(
A0+

z
p
n
w
q
n

)q + q2

wq+1−pz
−p
n

(
A0+

z
p
n
w
q
n

)q+1

 .

When this system is evaluated at (x̄, ȳ) we get

B =

 p
x̄1−pȳq

−qx̄p
ȳq+1

−qp
ȳq−px̄1−p(A0+ x̄p

ȳq )
q+1

p

ȳ1−p(A0+ x̄p

ȳq )
q + q2

ȳ1−p+qx̄−p(A0+ x̄p

ȳq )
q+1

 .

The solution is two periodic, so x̄ = x2n−1 = x2n+1 = A0 +
xp2n−1

xq2n
= A0 + x̄p

ȳq
.

Then

B =

(
p

x̄1−pȳq
−qx̄p
ȳq+1

−pq
x̄q+2−pȳq−p

p
x̄q ȳ1−p + q2

(x̄ȳ)q+1−p

)
.

To get the characteristic equation of B we solve |B − λI| = 0.∣∣∣∣∣ p
x̄1−pȳq

− λ −qx̄p
ȳq+1

−pq
x̄q+2−pȳq−p

p
x̄q ȳ1−p + q2

(x̄ȳ)q+1−p − λ

∣∣∣∣∣ = 0.

We get

(
p

x̄1−pȳq
− λ)(

p

x̄qȳ1−p +
q2

(x̄ȳ)q+1−p − λ)− (
−qx̄p

ȳq+1
)(

−pq
x̄q+2−pȳq−p

) = 0.
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Then

p2

x̄q−p+1ȳq−p+1
+

pq2

x̄q−2p+2ȳ2q−p+1
− pλ

x̄1−pȳq
− pλ

x̄qȳ1−p−
q2λ

(x̄ȳ)q+1−p+λ2− pq2

x̄q−2p+2ȳ2q−p+1
= 0.

The characteristic equation of B is the following

λ2 − λ(
p

x̄1−pȳq
+

p

x̄qȳ1−p +
q2

(x̄ȳ)q+1−p ) +
p2

(x̄ȳ)q+1−p = 0. (3.51)

Since the solution is two periodic then x̄, ȳ satisfy (3.31) and we have that

x̄ > A0, ȳ > A1 and so (3.47) implies

p

x̄1−pȳq
+

p

x̄qȳ1−p +
q2

(x̄ȳ)q+1−p

<
p

x̄1−pȳq
+

p

x̄qȳ1−p +
p2 + q2

(x̄ȳ)q+1−p

<
p

Aq1A
1−p
0

+
p

Aq0A
1−p
1

+
p2 + q2

(A1A0)q+1−p < 1.

So all the roots of (3.51) are of modulus less than 1. Hence, using Theorem

1.3.1 (x̄, ȳ) is locally asymptotically stable, and referring to proposition 3.2.1

the solution is globally asymptotically stable.

(ii) We conclude from proposition 3.2.1 that there exists a unique 3-periodic

solution x̄n of (3.1).

Let

x3n−1 = x̄, x3n = ȳ, x3n+1 = A0 +
xp3n−1

xq3n
= A0 +

x̄p

ȳq
= z̄, n = 0, 1, ....

From (3.1) we get

x3n+1 = A0 +
xp3n−1

xq3n
, x3n+2 = A1 +

xp3n
xq3n+1

, x3n+3 = A2 +
xp3n+1

xq3n+2

, n = 0, 1, ....

(3.52)

If we set x3n−2 = un, x3n−1 = νn, x3n = wn in (3.52) we get

un+1 = A0 +
νpn
wqn
, νn+1 = A1 +

wpn
uqn+1

, wn+1 = A2 +
upn+1

νqn+1

, n = 0, 1, .... (3.53)
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Then (z̄, x̄, ȳ) is the positive equilibrium point of (3.53). The preceding

system can be written as

un+1 = A0+
νpn
wqn
, νn+1 = A1+

wpn(
A0 + νpn

wqn

)q , wn+1 = A2+

(
A0 + νpn

wqn

)p
A1 + wpn(

A0+
ν
p
n
w
q
n

)q
q ,

which can be linearized as

zn+1 = Tzn,

where

T =


∂un+1

∂un

∂un+1

∂νn

∂un+1

∂wn
∂νn+1

∂un

∂νn+1

∂νn

∂νn+1

∂wn
∂wn+1

∂un

∂wn+1

∂νn

∂wn+1

∂wn

 =

0 r1 s1

0 r2 s2

0 r3 s3

 , zn =

unνn
wn

 .

Now,

∂
(
A0 + νpn

wqn

)
∂un

= 0.

r1 =
∂
(
A0 + νpn

wqn

)
∂νn

=
wqnpν

p−1
n − 0

w2q
n

=
p

ν1−p
n wqn

.

s1 =
∂
(
A0 + νpn

wqn

)
∂wn

=
0− νpnqwq−1

n

w2q
n

=
−qνpn
wq+1
n

.

∂

A1 + wpn(
A0+

ν
p
n
w
q
n

)q


∂un
= 0.

r2 =

∂

A1 + wpn(
A0+

ν
p
n
w
q
n

)q


∂νn

=
0− wpnq

(
A0 + νpn

wqn

)q−1 (
pwqnν

p−1
n −0

w2q
n

)
(
A0 + νpn

wqn

)2q

=
−wpnq

(
A0 + νpn

wqn

)q−1 (
pwqnν

p−1
n

w2q
n

)
(
A0 + νpn

wqn

)2q
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r2 =
−pq

wq−pn ν1−p
n

(
A0 + νpn

wqn

)q+1

s2 =

∂

A1 + wpn(
A0+

ν
p
n
w
q
n

)q


∂wn

=

(
A0 + νpn

wqn

)q
pwp−1

n − wpnq
(
A0 + νpn

wqn

)q−1 (
0−νpnqwq−1

n

w2q
n

)
(
A0 + νpn

wqn

)2q

=
p

w1−p
n

(
A0 + νpn

wqn

)q +
q2νpn(

A0 + νpn
wqn

)q+1

wq+1−p
n

.

∂

A2 +

(
A0+

ν
p
n
w
q
n

)p
A1+

w
p
n(

A0+
ν
p
n
w
q
n

)q

q


∂un

= 0.

r3 =

∂

A2 +

(
A0+

ν
p
n
w
q
n

)p
A1+

w
p
n(

A0+
ν
p
n
w
q
n

)q

q


∂νn

=

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q

p
(
A0 + νpn

wqn

)p−1 [
wqnpν

p−1
n −0

w2q
n

]
A1 + wpn(

A0+
ν
p
n
w
q
n

)q
2q

−

(
A0 + νpn

wqn

)p
q

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q−1 [

0− wpnq
(
A0 + νpn

wqn

)q−1 (
wqnpν

p−1
n −0

w2q
n

)]
A1 + wpn(

A0+
ν
p
n
w
q
n

)q
2q (

A0 + νpn
wqn

)2q

.
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r3 =
p2

ν1−pwqn

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q (

A0 + νpn
w

q

n

)1−p

+
pq2

ν1−p
n wq−pn

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q+1 (

A0 + νpn
wqn

)q+1−p

.

s3 =

∂

A2 +

(
A0+

ν
p
n
w
q
n

)p
A1+

w
p
n(

A0+
ν
p
n
w
q
n

)q

q


∂wn

.

s3 =

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q

p
(
A0 + νpn

wqn

)p−1 (
0−νpnqwq−1

n

w2q
n

)
A1 + wpn(

A0+
ν
p
n
w
q
n

)q
2q

−

(
A0 + νpn

wqn

)p
q

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q−1 [(

A0 + νpn
wqn

)q
pwp−1

n − wpnq
(
A0 + νpn

wqn

)q−1 (
0−νpnqwq−1

n

w2q
n

)]
A1 + wpn(

A0+
ν
p
n
w
q
n

)q
2q (

A0 + νpn
wqn

)2q

.

s3 =
−pqνpn

wq+1
n

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q (

A0 + νpn
wqn

)1−p
− qp

w1−p
n

A1 + wpn(
A0+

ν
p
n
w
q
n

)q
q+1 (

A0 + νpn
wqn

)q−p
− q3νpn

wq+1−p
n

(
A0 + νpn

wqn

)q+1−p
A1 + wpn(

A0+
ν
p
n
w
q
n

)q
q+1 .
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Now, un = x3n−2 = x3n+1 = z̄ since the solution xn is three periodic, νn =

x3n−1 = x̄, wn = x3n = ȳ. It is known that A0+ νpn
wqn

= un+1 = x3n+1 = x3n−2 =

z̄, also we have that A1 + wpn(
A0+

ν
p
n
w
q
n

)q = νn+1 = x3n+2 = x3n−1 = νn = x̄.

Consequently,

r1 =
p

x̄1−pȳq
,

s1 = − qx̄p

ȳq+1
,

r2 = − pq

x̄1−pȳq−pz̄q+1
,

s2 =
p

ȳ1−pz̄q
+

q2x̄p

ȳq+1−pz̄q+1

r3 =
p2

x̄q+1−pȳqz̄1−p +
pq2

x̄2+q−pȳq−pz̄q+1−p ,

s3 = − pq

x̄q−pȳq+1z̄1−p −
pq

x̄1+qȳ1−pz̄q−p
− q3

(x̄ȳz̄)q+1−p .

Now, |T − λI| = 0

|T − λI| =

∣∣∣∣∣∣∣
−λ r1 s1

0 r2 − λ s2

0 r3 s3 − λ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
−λ p

x̄1−pȳq
− qx̄p

ȳq+1

0 − pq
x̄1−pȳq−pz̄q+1 − λ p

ȳ1−pz̄q
+ q2x̄p

ȳq+1−pz̄q+1

0 p2

x̄q+1−pȳq z̄1−p + pq2

x̄2+q−pȳq−pz̄q+1−p − pq
x̄q−pȳq+1z̄1−p − pq

x̄1+q ȳ1−pz̄q−p
− q3

(x̄ȳz̄)q+1−p − λ

∣∣∣∣∣∣∣

= −λ

∣∣∣∣∣ − pq
x̄1−pȳq−pz̄q+1 − λ p

ȳ1−pz̄q
+ q2x̄p

ȳq+1−pz̄q+1

p2

x̄q+1−pȳq z̄1−p + pq2

x̄2+q−pȳq−pz̄q+1−p − pq
x̄q−pȳq+1z̄1−p − pq

x̄1+q ȳ1−pz̄q−p
− q3

(x̄ȳz̄)q+1−p − λ

∣∣∣∣∣ = 0,

which is

−λ
((
− pq

x̄1−pȳq−pz̄q+1
− λ
)(
− pq

x̄q−pȳq+1z̄1−p −
pq

x̄1+qȳ1−pz̄q−p
− q3

(x̄ȳz̄)q+1−p − λ
)

−
(

p

ȳ1−pz̄q
+

q2x̄p

ȳq+1−pz̄q+1

)(
p2

x̄q−p+1ȳqz̄1−p +
pq2

x̄2+q−pȳq−pz̄q+1−p

))
= 0
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Then

−λ
(

(pq)2

x̄q−2p+1ȳ2q−p+1z̄q−p+2
+

(pq)2

x̄q−p+2ȳq−2p+1z̄2q−p+1
+

pq4

x̄q−2p+2ȳ2q−2p+1z̄2q−p+2

+
λpq

x̄1−pȳq−pz̄q+1
+

λpq

x̄q−pȳq+1z̄1−p +
λpq

x̄q+1ȳ1−pz̄q−p
+

λq3

(x̄ȳz̄)q+1−p + λ2

− p3

(x̄ȳz̄)q−p+1
− (pq)2

x̄q−p+2ȳq−2p+1z̄2q−p+1
− (pq)2

x̄q−2p+1ȳ2q−p+1z̄q−p+2
− pq4

x̄q−2p+2ȳ2q−2p+1z̄2q−p+2

)
= 0,

which implies that

λ

(
λ2 +

λpq

x̄1−pȳq−pz̄q+1
+

λpq

x̄q−pȳq+1z̄1−p +
λpq

x̄q+1ȳ1−pz̄q−p
+

λq3

(x̄ȳz̄)q−p+1
− p3

(x̄ȳz̄)q−p+1

)
= 0.

Then the characteristic equation of the matrix T is

λ

(
λ2 + λ

(
pq

x̄q−pȳq+1z̄1−p +
pq

x̄1−pȳq−pz̄q+1
+

pq

x̄1+qȳ1−pz̄q−p
+

q3

(x̄ȳz̄)q+1−p

)
− p3

(x̄ȳz̄)q+1−p

)
= 0.

(3.54)

Now,

pq

x̄q−pȳq+1z̄1−p +
pq

x̄1−pȳq−pz̄q+1
+

pq

x̄1+qȳ1−pz̄q−p
+

q3

(x̄ȳz̄)q+1−p <

pq

Aq−p0 Aq+1
1 A1−p

2

+
pq

A1−p
0 Aq−p1 Aq+1

2

+
pq

A1+q
0 A1−p

1 Aq−p2

+
q3

(A0A1A2)q+1−p <

pq

Aq−p0 Aq+1
1 A1−p

2

+
pq

A1−p
0 Aq−p1 Aq+1

2

+
pq

A1+q
0 A1−p

1 Aq−p2

+
p3 + q3

(A0A1A2)q+1−p

<
3pq

C2(q+p−1)
+

p3 + q3

C3(q+p−1)
< 1.

So all the roots of (3.54) are of modulus less than 1. Hence, according to

Theorem 1.3.1 the unique 3-periodic solution of (3.1) is locally asymptotically

stable.

Finally, from proposition (3.2.1) the unique 3-periodic solution is globally

asymptotically stable.



Chapter 4

On the Difference Equation

xn+1 = pn +
xn
xn−1

In this part we will study properties such as boundedness and persistence

and attractivity of the equation

xn+1 = pn +
xn
xn−1

, n = 0, 1, .... (4.1)

Where x−1 > 0, x0 ≥ 0, and pn is a positive bounded sequence with

lim inf
n→∞

pn = p ≥ 0 and lim sup
n→∞

pn = q <∞. (4.2)

4.1 Boundedness and persistence

Lemma 4.1.1 Assume Eq.(4.2) is satisfied. Let xn be a solution of (4.1)

(i) If p > 0, then {xn} persists.

(ii) If p > 1, then {xn} is bounded from above.

Proof. (i) Assume that p > 0, it is clear that xn > 0 for all n = 1, 2, ..., so
xn
xn−1

> 0, which concludes

xn+1 = pn +
xn
xn−1

> pn.
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So we get

lim inf
n→∞

xn ≥ lim inf
n→∞

pn = p.

Then

lim inf
n→∞

xn ≥ p.

Thus {xn} persists.

(ii)Assume that p > 1, from (i) we know that xn−1 ≥ pn−2 ≥ p − ε > 1 for

sufficiently large n and ε > 0. Use Eq.(4.1) to get

xn+1 = pn +
xn
xn−1

≤ pn +
xn
p− ε

.

Referring to Theorem (2.0.4), {xn} is bounded since pn is bounded.

Lemma 4.1.2 Assume that Eq.(4.2) is satisfied and p > 1, and let xn be a

solution of Eq.(4.1). If

λ = lim inf
n→∞

xn and µ = lim sup
n→∞

xn,

then
pq − 1

q − 1
≤ λ ≤ µ ≤ pq − 1

p− 1
. (4.3)

Proof. Let ε > 0, then there exists N0(ε) such that for n ≥ N0(ε), we have

λ− ε ≤ xn ≤ µ+ ε and p− ε ≤ pn ≤ q + ε. Then,

xn+1 = pn +
xn
xn−1

≥ p− ε+
λ− ε
µ+ ε

, (4.4)

and

xn+1 = pn +
xn
xn−1

≤ q + ε+
µ+ ε

λ− ε
. (4.5)

As n→∞ we have

λ ≥ p− ε+
λ− ε
µ+ ε

, (4.6)

and

µ ≤ q + ε+
µ+ ε

λ− ε
. (4.7)

ε > 0 is arbitrary, so

λ ≥ p+
λ

µ
,
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and

µ ≤ q +
µ

λ
.

Hence,

λµ− pµ ≥ λ,

and

λµ− qλ ≤ µ.

Hence,

µp+ λ ≤ λµ ≤ qλ+ µ.

As a result, we get

µp− µ ≤ qλ− λ,

and so

µ(p− 1) ≤ λ(q − 1),

so we get
µ

λ
≤ q − 1

p− 1
and

λ

µ
≥ p− 1

q − 1
.

For n > N0 Eq. Using (4.4) and Eq.(4.5) and Taylor’s expansion we get

xn+1 ≥ p− ε+
λ− ε
µ+ ε

= p+
λ

µ
+O(ε)

≥ p+
p− 1

q − 1
+O(ε)

=
pq − p+ p− 1

q − 1
+O(ε)

=
pq − 1

q − 1
+O(ε),
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and

xn+1 ≤ q + ε+
µ+ ε

λ− ε
= q +

µ

λ
+O(ε)

≤ q +
q − 1

p− 1
+O(ε)

=
pq − q + q − 1

p− 1
+O(ε)

=
pq − 1

p− 1
+O(ε).

Now, ε > 0 is arbitrary, then,

xn+1 ≥
pq − 1

q − 1
,

and

xn+1 ≤
pq − 1

p− 1
.

As n→∞, we have

λ ≥ pq − 1

q − 1
,

and

µ ≤ pq − 1

p− 1
.

So we get
pq − 1

q − 1
≤ λ ≤ µ ≤ pq − 1

p− 1
.

Theorem 4.1.1 Consider the interval I = [PQ−1
Q−1

, PQ−1
P−1

], where

1 < P ≤ pn ≤ Q, for n = 0, 1, 2, ... If xn is a solution of Eq.(4.1) such that

x−1, x0 ∈ I, then xn ∈ I for all n = 0, 1, 2, ...

Proof.

x1 = p0 +
x0

x−1

.

Now, x−1, x0 ∈ I = [PQ−1
Q−1

, PQ−1
P−1

], so we get

x0

x−1

≤
PQ−1
P−1
PQ−1
Q−1

=
Q− 1

P − 1
,
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and
x0

x−1

≥
PQ−1
Q−1

PQ−1
P−1

=
P − 1

Q− 1
.

Then,

x1 = p0 +
x0

x−1

≤ Q+
PQ−1
P−1
PQ−1
Q−1

= Q+
Q− 1

P − 1
=
PQ−Q+Q− 1

P − 1
=
PQ− 1

P − 1
,

and

x1 = p0 +
x0

x−1

≥ P +

PQ−1
Q−1

PQ−1
P−1

= P +
P − 1

Q− 1
=
PQ− P + P − 1

Q− 1
=
PQ− 1

Q− 1
.

So x1 ∈ I. Assume that the result holds for k = 2, 3, ..., n.

For k = n+ 1

xn+1 = pn+
xn
xn−1

≤ Q+

PQ−1
p−1

PQ−1
Q−1

= Q+
Q− 1

P − 1
=
PQ−Q+Q− 1

P − 1
=
PQ− 1

P − 1
,

and

xn+1 = pn+
xn
xn−1

≥ P +

PQ−1
Q−1

PQ−1
P−1

= P +
P − 1

Q− 1
=
PQ− P + P − 1

Q− 1
=
PQ− 1

Q− 1
.

So xn+1 ∈ I. We conclude that xn ∈ I, for all n = 0, 1, ....

4.2 Attractivity

Assume that x̄ is a positive solution of (4.1). Here we are interested in

finding sufficient conditions such that x̄ attracts all the positive solutions of

the equation, in other words we mean

xn → x̄.

Now, let

yn =
xn
x̄n
, n = −1, 0, 1, ....

This gives

xn = x̄nyn.
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Returning to Eq.(4.1), plug in the new value of xn

x̄n+1yn+1 = pn +
x̄nyn

x̄n−1yn−1

.

yn+1 =
pn + x̄nyn

x̄n−1yn−1

x̄n+1

=
pn + x̄nyn

x̄n−1yn−1

pn + x̄n
x̄n−1

.

Then

yn+1 =
pn + x̄n

x̄n−1

yn
yn−1

pn + x̄n
x̄n−1

. (4.8)

Lemma 4.2.1 Let xn be a positive solution of Eq.(4.1). Then the following

are true

(i) Eq.(4.8) has a positive equilibrium solution ȳ = 1.

(ii) If for some n, yn−1 < yn, then yn+1 > 1. Similarly, if for some n,

yn−1 ≥ yn, then yn+1 ≤ 1.

Proof. (i)

ȳ =
pn + x̄

x̄
y
y

pn + x̄
x̄

= 1.

Then Eq.(4.8) has a positive equilibrium solution that is 1.

(ii)Assume that for some n, yn−1 < yn, then yn
yn−1

> 1.

yn+1 =
pn + x̄n

x̄n−1

(
yn
yn−1

)
pn + x̄n

x̄n−1

>
pn + x̄n

x̄n−1
.(1)

pn + x̄n
x̄n−1

=
pn + x̄n

x̄n−1

pn + x̄n
x̄n−1

= 1.
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So yn+1 > 1.

Similarly, assume yn−1 ≥ yn, then yn
yn−1
≤ 1. Now,

yn+1 =
pn + x̄n

x̄n−1

(
yn
yn−1

)
pn + x̄n

x̄n−1

≤
pn + x̄n

x̄n−1
.(1)

pn + x̄n
x̄n−1

=
pn + x̄n

x̄n−1

pn + x̄n
x̄n−1

= 1.

So yn+1 ≤ 1.

Theorem 4.2.1 Let yn be a solution of Eq.(4.1)

a) Assume that there exists n such that yn−1 < 1 and yn > 1 and yn+2 <

yn+3 < yn+4 < ....

(i) If yn > yn+1, then yn+k > 1 for all k = 4, 5, ....

(ii) If yn < yn+1 and yn+2 > yn+1, then yn+k > 1 for all k = 1, 2, ....

b) Assume that there exists n such that yn−1 > 1 and yn < 1 and yn+2 <

yn+3 < yn+4 < ....

(i) If yn > yn+1 and yn+2 > yn+1, then yn+k > 1 for all k = 3, 4, ....

(ii) If yn < yn+1, then yn+k > 1 for all k = 2, 3, ....

Proof. a) Assume that yn−1 < 1 and yn > 1, then yn
yn−1

> 1, which concludes

that

yn+1 =
pn + x̄n

x̄n−1

(
yn
yn−1

)
pn + x̄n

x̄n−1

>
pn + x̄n

x̄n−1
.(1)

pn + x̄n
x̄n−1

=
pn + x̄n

x̄n−1

pn + x̄n
x̄n−1

= 1.
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Thus, yn+1 > 1.

(i) Now, since yn > yn+1 and yn+1

yn
< 1 and we have

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

<
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.

Hence yn+2 < 1, it’s clear that yn+2 < yn+1, then yn+2

yn+1
< 1, thus

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

<
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

Thus yn+3 < 1.

Assume that yn+2 < yn+3 < yn+4 < ....

For k = 4

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

>
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.
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Thus yn+4 > 1.

yn+5 =
pn+4 + x̄n+4

x̄n+3

(
yn+4

yn+3

)
pn+4 + x̄n+4

x̄n+3

>
pn+4 + x̄n+4

x̄n+3
.(1)

pn+4 + x̄n+4

x̄n+3

=
pn+4 + x̄n+4

x̄n+3

pn+4 + x̄n+4

x̄n+3

= 1.

Then yn+5 > 1.

yn+6 =
pn+5 + x̄n+5

x̄n+4

(
yn+5

yn+4

)
pn+5 + x̄n+5

x̄n+4

>
pn+5 + x̄n+5

x̄n+4
.(1)

pn+5 + x̄n+5

x̄n+4

=
pn+5 + x̄n+5

x̄n+4

pn+5 + x̄n+5

x̄n+4

= 1.

Thus yn+6 > 1.

It is obvious that for k = 4, 5, 6, ... we have yn+k > 1 since yn+k−1 > yn+k−2,

then yn+k−1

yn+k−2
> 1. As a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

>
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.

(ii) Now, since yn < yn+1, yn+1

yn
> 1, thus we have

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

>
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.
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Thus yn+2 > 1.

Let k = 3. It is assumed that yn+2 > yn+1, so yn+2

yn+1
> 1, thus

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

>
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

Thus yn+3 > 1.

It is assumed that yn+2 < yn+3, then yn+3

yn+2
> 1, which implies that

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

>
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.

So yn+4 > 1.

In general for k = 1, 2, 3, ... it is true that yn+k > 1 since yn+k−1 > yn+k−2

and yn+k−1

yn+k−2
> 1. As a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

>
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.

b) Assume that yn−1 > 1 and yn < 1, then yn
yn−1

< 1, thus we have

yn+1 =
pn + x̄n

x̄n−1

(
yn
yn−1

)
pn + x̄n

x̄n−1

<
pn + x̄n

x̄n−1
.(1)

pn + x̄n
x̄n−1

=
pn + x̄n

x̄n−1

pn+1 + x̄n
x̄n−1

= 1.
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Thus yn+1 < 1.

i) Since yn > yn+1, yn+1

yn
< 1, then

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

<
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.

Then yn+2 < 1. Now, for k = 3, it is given that yn+2 > yn+1 which gives
yn+2

yn+1
> 1, consequently

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

>
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

So yn+3 > 1. It is assumed that yn+2 < yn+3, then yn+3

yn+2
> 1, which implies

that

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

>
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.

So yn+4 > 1.

Generally, for k = 3, 4, ... we have yn+k > 1 since yn+k−1 > yn+k−2 and
yn+k−1

yn+k−2
> 1. As a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

>
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.
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(ii)For k = 2, yn < yn+1, consequently yn+1

yn
> 1 and

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

>
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.

Thus yn+2 > 1, since yn+2 > yn+1 we have

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

>
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

For k = 4, yn+3 > yn+2, then yn+3

yn+2
> 1, which gives

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

>
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.

Hence, yn+k > 1 for all k = 2, 3, ... since yn+k−1 > yn+k−2 and yn+k−1

yn+k−2
> 1. As

a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

>
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.
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Theorem 4.2.2 Let yn be a solution of Eq.(4.1)

a)Assume that there exists n such that yn−1 < 1, yn > 1 and yn+2 > yn+3 >

yn+4 > ....

(i) If yn > yn+1, then yn+k < 1 for all k = 2, 3, ....

(ii) If yn < yn+1 and yn+2 < yn+1, then yn+k < 1 for all k = 3, 4, ....

b) Assume that there exists n such that yn−1 > 1, yn < 1 and yn+2 > yn+3 >

yn+4 > ....

(i) If yn < yn+1, then yn+k < 1 for all k = 4, 5, ....

(ii) If yn > yn+1 and yn+2 < yn+1, then yn+k < 1 for all k = 1, 2, ....

Proof. a) Assume that there exists n such that yn−1 < 1, yn > 1 and

yn+2 > yn+3 > yn+4 > ....

It is clear that yn
yn−1

> 1, then

yn+1 =
pn + x̄n

x̄n−1

(
yn
yn−1

)
pn + x̄n

x̄n−1

>
pn + x̄n

x̄n−1
.(1)

pn + x̄n
x̄n−1

=
pn + x̄n

x̄n−1

pn+1 + x̄n
x̄n−1

= 1.

So yn+1 > 1.

(i)For k = 2

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

.

Since yn > yn+1 we have yn+1

yn
< 1, then

yn+2 <
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.
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Thus yn+2 < 1.

For k = 3, yn+2 < yn+1, then yn+2

yn+1
< 1 and as a result

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

<
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

So yn+3 < 1.

Since yn+2 > yn+3 and yn+3

yn+2
< 1 we have

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

<
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.

So yn+4 < 1.

Since yn+k−1 < yn+k−2 we get yn+k < 1 for all k = 2, 3, ....

In other words, yn+k−1

yn+k−2
< 1. As a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

<
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.

(ii) yn+1 > yn, then yn+1

yn
> 1 and so

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

>
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.
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So yn+2 > 1.

For k = 3, yn+2 < yn+1, then yn+2

yn+1
< 1 and as a result

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

<
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

So yn+3 < 1. Since yn+2 > yn+3 we have

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

<
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.

So yn+4 < 1.

Hence yn+k < 1 for all k = 3, 4, ... since yn+k−1 < yn+k−2.

In other words, yn+k−1

yn+k−2
< 1. As a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

<
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.

b) Assume that there exists n such that yn−1 > 1, yn < 1, then yn
yn−1

< 1 and

yn+1 =
pn + x̄n

x̄n−1

(
yn
yn−1

)
pn + x̄n

x̄n−1

<
pn + x̄n

x̄n−1
.(1)

pn + x̄n
x̄n−1

=
pn + x̄n

x̄n−1

pn+1 + x̄n
x̄n−1

= 1.
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(i) yn < yn+1 and consequently yn+1

yn
> 1, then

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

>
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.

Then yn+2 > 1. It is clear that yn+1 < yn+2, therefore

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

>
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

For k = 4, using the assumption that says yn+2 > yn+3 we get yn+3

yn+2
< 1, then

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

<
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.

Then, yn+4 < 1.

Hence, yn+k < 1 for k = 4, 5, 6, ... as a result of yn+k−1 < yn+k−2.

In other words, yn+k−1

yn+k−2
< 1. As a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

<
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.



4.2 Attractivity 81

(ii)For k = 2, we are given that yn > yn+1 which gives that yn+1

yn
< 1, then

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

<
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

=
pn+1 + x̄n+1

x̄n

pn+1 + x̄n+1

x̄n

= 1.

So yn+2 < 1. As a result of the assumption we have yn+2

yn+1
< 1, hence

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

<
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

=
pn+2 + x̄n+2

x̄n+1

pn+2 + x̄n+2

x̄n+1

= 1.

Hence, yn+3 < 1. Now, for k = 4 we have

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

<
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

=
pn+3 + x̄n+3

x̄n+2

pn+3 + x̄n+3

x̄n+2

= 1.

Thus yn+4 < 1.

Hence, yn+k < 1 for k = 1, 2, ... since yn+k−1 < yn+k−2.

In other words, yn+k−1

yn+k−2
< 1. As a result,

yn+k =
pn+k−1 + x̄n+k−1

x̄n+k−2

(
yn+k−1

yn+k−2

)
pn+k−1 + x̄n+k−1

x̄n+k−2

<
pn+k−1 + x̄n+k−1

x̄n+k−2
.(1)

pn+k−1 + x̄n+k−1

x̄n+k−2

= 1.
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Theorem 4.2.3 Let {yn} be a solution of Eq.(4.1). If there exists n such

that yn > yn+1 > 1 and yn+k

yn+k−1
> 1 for k = 4l − 1, where l = 1, 2, 3, ..., and

yn+k

yn+k−1
< 1 for k = 4l+1, where l = 0, 1, 2, ..., then {yn} is an oscillatory solu-

tion in which {yn+4l, yn+4l+1} where l = 1, 2, 3, ... gives the positive semicycles

and {yn+4l+2, yn+4l+3} where l = 0, 1, 2, ... gives the negative semicycles.

Proof. We proceed by induction. We are given that yn > yn+1 then yn+1

yn
< 1,

which implies that

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

<
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

= 1.

Then yn+2 < 1.

It is clear that yn+2 < yn+1 which gives yn+2

yn+1
< 1, then

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

<
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

= 1.

Then yn+3 < 1. Now,

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

>
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

= 1.

Since according to the assumption for k = 4 × 1 − 1 = 3 we have yn+3

yn+2
> 1,

then yn+4 > 1.

yn+5 =
pn+4 + x̄n+4

x̄n+3

(
yn+4

yn+3

)
pn+4 + x̄n+4

x̄n+3

>
pn+4 + x̄n+4

x̄n+3
.(1)

pn+4 + x̄n+4

x̄n+3

= 1.

And that because yn+4 > 1 and yn+3 < 1, then yn+4

yn+3
> 1, then yn+5 > 1.

yn+6 =
pn+5 + x̄n+5

x̄n+4

(
yn+5

yn+4

)
pn+5 + x̄n+5

x̄n+4

<
pn+5 + x̄n+5

x̄n+4
.(1)

pn+5 + x̄n+5

x̄n+4

= 1.

Since for k = 4× 1 + 1 = 5 we have that yn+5

yn+4
< 1 as in the assumption, then

yn+6 < 1. And

yn+7 =
pn+6 + x̄n+6

x̄n+5

(
yn+6

yn+5

)
pn+6 + x̄n+6

x̄n+5

<
pn+6 + x̄n+6

x̄n+5
.(1)

pn+6 + x̄n+6

x̄n+5

= 1.
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Since yn+6 < yn+5 we have yn+6

yn+5
< 1, then yn+7 < 1.

If k = 4× 2− 1 = 7, then yn+7

yn+6
> 1 and we get

yn+8 =
pn+7 + x̄n+7

x̄n+6

(
yn+7

yn+6

)
pn+7 + x̄n+7

x̄n+6

>
pn+7 + x̄n+7

x̄n+6
.(1)

pn+7 + x̄n+7

x̄n+6

= 1.

Now, yn+8 > 1 and yn+7 < 1, then yn+8

yn+7
> 1, as a result

yn+9 =
pn+8 + x̄n+8

x̄n+7

(
yn+8

yn+7

)
pn+8 + x̄n+8

x̄n+8

>
pn+8 + x̄n+8

x̄n+7
.(1)

pn+8 + x̄n+8

x̄n+7

= 1.

If k = 4× 2 + 1 = 9, then yn+9

yn+8
< 1, then

yn+10 =
pn+9 + x̄n+9

x̄n+8

(
yn+9

yn+8

)
pn+9 + x̄n+9

x̄n+8

<
pn+9 + x̄n+9

x̄n+8
.(1)

pn+9 + x̄n+9

x̄n+8

= 1.

Obviously, yn+11 < 1.

Then {yn, yn+1} is a positive semicycle using the assumption yn > yn+1 >

1, {yn+2, yn+3} is a negative semicycle, {yn+4, yn+5} is a positive semicycle,

{yn+6, yn+7} is a negative semicycle, {yn+8, yn+9} is a positive semicycle, and

{yn+10, yn+11} is a negative semicycle. If you used l = 0 you will get the

second semicycle, and l = 1 gives the second two semicycles, and l = 2 gives

the third two semicycles.

Assume that the result holds for l − 1, we prove it for l.

If for k = 4l− 1, l = 1, 2, 3, ..., yn+k

yn+k−1
> 1, and if for k = 4l+ 1, l = 0, 1, 2, ...,

yn+k

yn+k−1
< 1, then {yn+4l, yn+4l+1} is a positive semicycle and {yn+4l+2, yn+4l+3}

is a negative semicycle.

yn+k+1 =
pn+k + x̄n+k

x̄n+k−1

(
yn+k

yn+k−1

)
pn+k + x̄n+k

x̄n+k−1

yn+4l =
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

(
yn+4l−1

yn+4l−2

)
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

>
pn+4l−1 + x̄n+4l−1

x̄n+4l−2
.(1)

pn+4l−1 + x̄n+4l−1

x̄n+4l−2

= 1.

Consequently, yn+4l+1 > 1 by induction hypothesis. Now, using the second

assumption we have

yn+4l+2 =
pn+4l+1 + x̄n+4l+1

x̄n+4l

(
yn+4l+1

yn+4l

)
pn+4l+1 + x̄n+4l+1

x̄n+4l

<
pn+4l+1 + x̄n+4l+1

x̄n+4l
.(1)

pn+4l+1 + x̄n+4l+1

x̄n+4l

= 1.
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It is clear that yn+4l+3 < 1. As a result, {yn+4l, yn+4l+1} is a positive semicycle

and {yn+4l+2, yn+4l+3} is a negative semicycle.

Theorem 4.2.4 Let {yn} be a solution of Eq.(4.1). If there exists n such

that yn+1 > yn > 1 and yn+k

yn+k−1
< 1 for k = 4l − 1, where l = 1, 2, 3, ...,

and yn+k

yn+k−1
> 1 for k = 2 and k = 4l + 1, where l = 0, 1, 2, ..., then {yn}

is an oscillatory solution in which {yn+4l, yn+4l+1} where l = 1, 2, 3, ... gives

all negative semicycles and {yn+4l+2, yn+4l+3} where l = 0, 1, 2, ... gives all

positive semicycles except the first one.

Proof. We proceed by induction. We are given that yn+1 > yn then yn+1

yn
> 1,

which implies that

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

>
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

= 1.

Then yn+2 > 1.

Using the assumption yn+2

yn+1
> 1, this implies that

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

>
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

= 1.

Then yn+3 > 1, and {yn+2, yn+3} is a positive semicycle. Now, according to

the assumption when k = 4× 1− 1 = 3, we have yn+3

yn+2
< 1 and as a result we

get

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

<
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

= 1.

Then yn+4 < 1. It is obvious that yn+4 < yn+3, which gives that yn+4

yn+3
< 1,

then

yn+5 =
pn+4 + x̄n+4

x̄n+3

(
yn+4

yn+3

)
pn+4 + x̄n+4

x̄n+3

<
pn+4 + x̄n+4

x̄n+3
.(1)

pn+4 + x̄n+4

x̄n+3

= 1.

Then yn+5 < 1, {yn+4, yn+5} is a negative semicycle.

yn+6 =
pn+5 + x̄n+5

x̄n+4

(
yn+5

yn+4

)
pn+5 + x̄n+5

x̄n+4

>
pn+5 + x̄n+5

x̄n+4
.(1)

pn+5 + x̄n+5

x̄n+4

= 1.
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Since for k = 4× 1 + 1 = 5 we have that yn+5

yn+4
> 1 as in the assumption, then

yn+6 < 1. And

yn+7 =
pn+6 + x̄n+6

x̄n+5

(
yn+6

yn+5

)
pn+6 + x̄n+6

x̄n+5

>
pn+6 + x̄n+6

x̄n+5
.(1)

pn+6 + x̄n+6

x̄n+5

= 1.

Since yn+6 > yn+5 we have yn+6

yn+5
> 1, then yn+7 > 1. Thus, {yn+6, yn+7} is a

positive semicycle.

When k = 4× 2− 1 = 7, then yn+7

yn+6
< 1 and we get

yn+8 =
pn+7 + x̄n+7

x̄n+6

(
yn+7

yn+6

)
pn+7 + x̄n+7

x̄n+6

<
pn+7 + x̄n+7

x̄n+6
.(1)

pn+7 + x̄n+7

x̄n+6

= 1.

Now, yn+8 < 1 and yn+7 > 1, then yn+8

yn+7
< 1, as a result

yn+9 =
pn+8 + x̄n+8

x̄n+7

(
yn+8

yn+7

)
pn+8 + x̄n+8

x̄n+8

<
pn+8 + x̄n+8

x̄n+7
.(1)

pn+8 + x̄n+8

x̄n+7

= 1.

As a result, {yn+8, yn+9} is a negative semicycle. If k = 4× 2 + 1 = 9, then
yn+9

yn+8
> 1 and

yn+10 =
pn+9 + x̄n+9

x̄n+8

(
yn+9

yn+8

)
pn+9 + x̄n+9

x̄n+8

>
pn+9 + x̄n+9

x̄n+8
.(1)

pn+9 + x̄n+9

x̄n+8

= 1.

Clearly, yn+11 > 1. The semicycle {yn+10, yn+11} is a positive semicycle.

The result says {yn+4l, yn+4l+1} is a negative semicycle, l = 1, 2, 3, ..., and

{yn+4l+2, yn+4l+3} is a positive semicycle, l = 0, 1, 2, ....

Now, setting l = 0 in the second semicycle gives the positive semicycle

{yn+2, yn+3} if we set l = 1 in the first semicycle, we get the negative semi-

cycle {yn+4, yn+5}. If l = 1 in the second semicycle, we get the positive

semicycle {yn+6, yn+7}, taking l = 2 in the first semicycle gives the negative

semicycle {yn+8, yn+9}. l = 2 in the second semicycle produces the positive

semicycle {yn+10, yn+11}, and these results match with the previous conclu-

sions.

Assume that the result holds for l − 1. We prove it for l.

If for k = 4l− 1, l = 1, 2, 3, ..., yn+k

yn+k−1
< 1, and if for k = 4l+ 1, l = 0, 1, 2, ...,
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yn+k

yn+k−1
> 1, {yn+4l, yn+4l+1} is a negative semicycle and {yn+4l+2, yn+4l+3} is

a positive semicycle. In other words,

yn+k+1 =
pn+k + x̄n+k

x̄n+k−1

(
yn+k

yn+k−1

)
pn+k + x̄n+k

x̄n+k−1

.

For k = 4l − 1

yn+4l =
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

(
yn+4l−1

yn+4l−2

)
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

<
pn+4l−1 + x̄n+4l−1

x̄n+4l−2
.(1)

pn+4l−1 + x̄n+4l−1

x̄n+4l−2

= 1.

Consequently, yn+4l+1 < 1 by induction hypothesis. Now, using the second

assumption we have

yn+4l+2 =
pn+4l+1 + x̄n+4l+1

x̄n+4l

(
yn+4l+1

yn+4l

)
pn+4l+1 + x̄n+4l+1

x̄n+4l

>
pn+4l+1 + x̄n+4l+1

x̄n+4l
.(1)

pn+4l+1 + x̄n+4l+1

x̄n+4l

= 1.

It is clear that yn+4l+3 > 1. As a result, {yn+4l, yn+4l+1} is a negative semi-

cycle and {yn+4l+2, yn+4l+3} is a positive semicycle.

Theorem 4.2.5 Let {yn} be a solution of Eq.(4.1). If there exists n such

that yn < yn+1 < 1 and yn+k

yn+k−1
< 1 for k = 4l − 1, where l = 1, 2, 3, ...,

and yn+k

yn+k−1
> 1 for k = 4l + 1, where l = 0, 1, 2, ..., then {yn} is an oscilla-

tory solution in which {yn+4l, yn+4l+1} where l = 1, 2, 3, ... gives all negative

semicycles except the first and {yn+4l+2, yn+4l+3} where l = 0, 1, 2, ... gives all

positive semicycles.

Proof. We proceed by induction. yn < yn+1, then yn+1

yn
> 1, which gives

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

>
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

= 1.

Then yn+2 > 1.

It is clear that yn+2 > yn+1, then yn+2

yn+1
> 1, this implies that

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

>
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

= 1.
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Then yn+3 > 1, and {yn+2, yn+3} is a positive semicycle. Now, when k =

4× 1− 1 = 3, according to the assumption yn+3

yn+2
< 1, then

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

<
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

= 1.

Then yn+4 < 1. It is obvious that yn+4 < yn+3, which gives that yn+4

yn+3
< 1,

then

yn+5 =
pn+4 + x̄n+4

x̄n+3

(
yn+4

yn+3

)
pn+4 + x̄n+4

x̄n+3

<
pn+4 + x̄n+4

x̄n+3
.(1)

pn+4 + x̄n+4

x̄n+3

= 1.

Then yn+5 < 1 and {yn+4, yn+5} is a negative semicycle.

When k = 4× 1 + 1 = 5, yn+5

yn+4
> 1, then

yn+6 =
pn+5 + x̄n+5

x̄n+4

(
yn+5

yn+4

)
pn+5 + x̄n+5

x̄n+4

>
pn+5 + x̄n+5

x̄n+4
.(1)

pn+5 + x̄n+5

x̄n+4

= 1.

yn+7 =
pn+6 + x̄n+6

x̄n+5

(
yn+6

yn+5

)
pn+6 + x̄n+6

x̄n+5

>
pn+6 + x̄n+6

x̄n+5
.(1)

pn+6 + x̄n+6

x̄n+5

= 1.

yn+6 > yn+5, consequently yn+6

yn+5
> 1 and yn+7 > 1. As a result {yn+6, yn+7} is

a positive semicycle.

When k = 4× 2− 1 = 7, then yn+7

yn+6
< 1 and we get

yn+8 =
pn+7 + x̄n+7

x̄n+6

(
yn+7

yn+6

)
pn+7 + x̄n+7

x̄n+6

<
pn+7 + x̄n+7

x̄n+6
.(1)

pn+7 + x̄n+7

x̄n+6

= 1.

Now, yn+8 < 1 and yn+7 > 1, then yn+8

yn+7
< 1, as a result

yn+9 =
pn+8 + x̄n+8

x̄n+7

(
yn+8

yn+7

)
pn+8 + x̄n+8

x̄n+8

<
pn+8 + x̄n+8

x̄n+7
.(1)

pn+8 + x̄n+8

x̄n+7

= 1.

As a result, {yn+8, yn+9} is a negative semicycle. If k = 4× 2 + 1 = 9, then
yn+9

yn+8
> 1, then

yn+10 =
pn+9 + x̄n+9

x̄n+8

(
yn+9

yn+8

)
pn+9 + x̄n+9

x̄n+8

>
pn+9 + x̄n+9

x̄n+8
.(1)

pn+9 + x̄n+9

x̄n+8

= 1.
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Clearly, yn+11 > 1. The semicycle {yn+10, yn+11} is a positive semicycle.

Then {yn, yn+1} is a negative semicycle and this results from the as-

sumption yn < yn+1 < 1, {yn+2, yn+3} is a positive semicycle, {yn+4, yn+5}
is a negative semicycle, {yn+6, yn+7} is positive semicycle, {yn+8, yn+9} is a

negative semicycle, and {yn+10, yn+11} is a positive semicycle. If you used

l = 0 you will get the second semicycle, and l = 1 gives the second two

semicycles, and l = 2 gives the third two semicycles.

Assume that the result holds for l − 1. We prove it for l.

If for k = 4l− 1, l = 1, 2, 3, ..., yn+k

yn+k−1
< 1, and if for k = 4l+ 1, l = 0, 1, 2, ...

, yn+k

yn+k−1
> 1, {yn+4l, yn+4l+1} is a negative semicycle and {yn+4l+2, yn+4l+3}

is a positive semicycle. In other words,

yn+k+1 =
pn+k + x̄n+k

x̄n+k−1

(
yn+k

yn+k−1

)
pn+k + x̄n+k

x̄n+k−1

.

For k = 4l − 1

yn+4l =
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

(
yn+4l−1

yn+4l−2

)
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

<
pn+4l−1 + x̄n+4l−1

x̄n+4l−2
.(1)

pn+4l−1 + x̄n+4l−1

x̄n+4l−2

= 1.

consequently, yn+4l+1 < 1 by induction hypothesis. Now, using the second

assumption we have

yn+4l+2 =
pn+4l+1 + x̄n+4l+1

x̄n+4l

(
yn+4l+1

yn+4l

)
pn+4l+1 + x̄n+4l+1

x̄n+4l

>
pn+4l+1 + x̄n+4l+1

x̄n+4l
.(1)

pn+4l+1 + x̄n+4l+1

x̄n+4l

= 1.

It is clear that yn+4l+3 > 1. As a result, {yn+4l, yn+4l+1} is a negative semi-

cycle and {yn+4l+2, yn+4l+3} is a positive semicycle.

Theorem 4.2.6 Let {yn} be a solution of Eq.(4.1). If there exists n such

that yn+1 < yn < 1 and yn+k

yn+k−1
< 1 for k = 2 and k = 4l + 1, where

l = 0, 1, 2, ..., and yn+k

yn+k−1
> 1 for k = 4l − 1, where l = 1, 2, 3, ...,

then {yn+4l, yn+4l+1} where l = 1, 2, 3, ... gives all positive semicycles, and

{yn+4l+2, yn+4l+3} where l = 0, 1, 2, ... gives all negative semicycles except

perhaps the first.
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Proof. We proceed by induction. yn+1 < yn, then yn+1

yn
< 1, which gives

yn+2 =
pn+1 + x̄n+1

x̄n

(
yn+1

yn

)
pn+1 + x̄n+1

x̄n

<
pn+1 + x̄n+1

x̄n
.(1)

pn+1 + x̄n+1

x̄n

= 1.

Then yn+2 < 1.

It is assumed that yn+k

yn+k−1
< 1 for k = 2, then yn+2

yn+1
< 1, this implies that

yn+3 =
pn+2 + x̄n+2

x̄n+1

(
yn+2

yn+1

)
pn+2 + x̄n+2

x̄n+1

<
pn+2 + x̄n+2

x̄n+1
.(1)

pn+2 + x̄n+2

x̄n+1

= 1.

Then yn+3 < 1, as a result {yn+2, yn+3} is a negative semicycle. Now, when

k = 4× 1− 1 = 3, according to the assumption yn+3

yn+2
> 1

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3

yn+2

)
pn+3 + x̄n+3

x̄n+2

>
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3

x̄n+2

= 1.

Then yn+4 > 1. It is obvious that yn+4 > yn+3, which gives that yn+4

yn+3
> 1,

then

yn+5 =
pn+4 + x̄n+4

x̄n+3

(
yn+4

yn+3

)
pn+4 + x̄n+4

x̄n+3

>
pn+4 + x̄n+4

x̄n+3
.(1)

pn+4 + x̄n+4

x̄n+3

= 1.

Then yn+5 > 1, {yn+4, yn+5} is a positive semicycle.

When k = 4× 1 + 1 = 5, yn+5

yn+4
< 1, then

yn+6 =
pn+5 + x̄n+5

x̄n+4

(
yn+5

yn+4

)
pn+5 + x̄n+5

x̄n+4

<
pn+5 + x̄n+5

x̄n+4
.(1)

pn+5 + x̄n+5

x̄n+4

= 1.

yn+7 =
pn+6 + x̄n+6

x̄n+5

(
yn+6

yn+5

)
pn+6 + x̄n+6

x̄n+5

<
pn+6 + x̄n+6

x̄n+5
.(1)

pn+6 + x̄n+6

x̄n+5

= 1.

Since yn+6 < yn+5, so yn+6

yn+5
< 1, then yn+7 < 1 and {yn+6, yn+7} is a negative

semicycle.

When k = 4× 2− 1 = 7, then yn+7

yn+6
> 1 and we get

yn+8 =
pn+7 + x̄n+7

x̄n+6

(
yn+7

yn+6

)
pn+7 + x̄n+7

x̄n+6

>
pn+7 + x̄n+7

x̄n+6
.(1)

pn+7 + x̄n+7

x̄n+6

= 1.
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Now, yn+8 > 1 and yn+7 < 1, then yn+8

yn+7
> 1, as a result

yn+9 =
pn+8 + x̄n+8

x̄n+7

(
yn+8

yn+7

)
pn+8 + x̄n+8

x̄n+8

>
pn+8 + x̄n+8

x̄n+7
.(1)

pn+8 + x̄n+8

x̄n+7

= 1.

As a result, {yn+8, yn+9} is a positie semicycle. If k = 4 × 2 + 1 = 9, then
yn+9

yn+8
< 1, then

yn+10 =
pn+9 + x̄n+9

x̄n+8

(
yn+9

yn+8

)
pn+9 + x̄n+9

x̄n+8

<
pn+9 + x̄n+9

x̄n+8
.(1)

pn+9 + x̄n+9

x̄n+8

= 1.

Clearly, yn+11 < 1. The semicycle {yn+10, yn+11} is a negative semicycle.

Now, we have two semicycles {yn+4l, yn+4l+1}, and {yn+4l+2, yn+4l+3}, l = 0 in

the second semicycle gives the negative semicycle {yn+2, yn+3}, l = 1 in the

first one gives the positive semicycle {yn+4, yn+5} and in the second one gives

the negative semicycle {yn+6, yn+7}, l = 2 in the first one gives the positive

semicycle {yn+8, yn+9} and in the second one gives the negative semicycle

{yn+10, yn+11}
Assume that the result holds for l − 1. We prove it for l.

If for k = 4l − 1, l = 1, 2, 3, ..., yn+k

yn+k−1
> 1, and if for k = 4l + 1, l =

0, 1, 2, ... , yn+k

yn+k−1
< 1, then {yn+4l, yn+4l+1} gives all positive semicycles, and

{yn+4l+2, yn+4l+3} gives all negative semicycles except perhaps the first. In

other words,

yn+k+1 =
pn+k + x̄n+k

x̄n+k−1

(
yn+k

yn+k−1

)
pn+k + x̄n+k

x̄n+k−1

.

For k = 4l − 1

yn+4l =
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

(
yn+4l−1

yn+4l−2

)
pn+4l−1 + x̄n+4l−1

x̄n+4l−2

>
pn+4l−1 + x̄n+4l−1

x̄n+4l−2
.(1)

pn+4l−1 + x̄n+4l−1

x̄n+4l−2

= 1.

consequently, yn+4l+1 > 1 by induction hypothesis. Now, using the second

assumption we have

yn+4l+2 =
pn+4l+1 + x̄n+4l+1

x̄n+4l

(
yn+4l+1

yn+4l

)
pn+4l+1 + x̄n+4l+1

x̄n+4l

<
pn+4l+1 + x̄n+4l+1

x̄n+4l
.(1)

pn+4l+1 + x̄n+4l+1

x̄n+4l

= 1.

It is clear that yn+4l+3 < 1. As a result, {yn+4l, yn+4l+1} is a positive semicycle

and {yn+4l+2, yn+4l+3} is a negative semicycle.
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4.3 Applications

Definition 4.3.1 We say that {pn} is periodic with prime period k if

pn+k = pn for n = −1, 0, ....

Assume that {pn} is periodic with period k.

p = lim inf
n→∞

pn,

and

q = lim sup
n→∞

pn.

Lemma 4.3.1 A necessary condition for the existence of a periodic solution

{xn} of Eq.(4.1) with prime period k is that {pn} is periodic with period k.

Proof. Assume that xn is a periodic solution with prime period k, so we

have xn+k = xn, for n = −1, 0, ..., we have

xn+k+1 = pn+k +
xn+k

xn+k−1

.

So we get that

pn+k = xn+k+1 −
xn+k

xn+k−1

= xn+1 −
xn
xn−1

= pn.

Then pn+k = pn, this means that {pn} is periodic with prime period k.

Theorem 4.3.1 Assume that pn is periodic with prime period k, and let

1 < p < q. Then there exists a positive periodic solution {x̄n} of Eq.(4.1)

with prime period k.

Proof. We aim here to show that there is a periodic solution for Eq.(4.1)

with period k. It is enough to show that the system has a positive solution.

x1 = p0 +
x0

x−1

= pk +
xk
xk−1

.

x2 = p1 +
x1

x0

= p1 +
x1

xk
.

x3 = p2 +
x2

x1

.
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...

xk = pk−1 +
xk−1

xk−2

.

Define a function F : Rk
+ → Rk

+ such that,

F (u1, u2, ..., uk) =

(
pk +

uk
uk−1

, p1 +
u1

uk
, ..., pk−1 +

uk−1

uk−2

)
.

In addition define an interval I =
[
pq−1
q−1

, pq−1
p−1

]
. Now, we aim to show that Ik

is invariant under the function F . If u1, u2, ..., uk ∈ I, we have

pi +
ui
uj

≤ q +

pq−1
p−1

pq−1
q−1

= q +
q − 1

p− 1

=
qp− q + q − 1

p− 1

=
pq − 1

p− 1
,

for i = 1, 2, ..., k, j = (i− 1) mod k

since the above system is periodic of period k ,

pi +
ui
uj

≥ p+

pq−1
q−1

pq−1
p−1

= p+
p− 1

q − 1

=
pq − p+ p− 1

q − 1

=
pq − 1

q − 1
,

for i = 1, 2, ..., k, j = (i− 1) mod k

for the same reason as above.
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Then pi + ui
uj
∈ I for i = 1, ..., k, j = (i− 1) mod k. So Ik is invariant under

the function F . Now, we have F : Ik → Ik and F is continuous on Ik and

Ik is convex and compact. Then, by Brower Fixed Point Theorem F has a

fixed point in Ik.

Assume that the fixed point is (ū1, ū2, ..., ūk) ∈ Ik. Define the sequence

x̄−1 = ūk−1, x̄0 = ūk and x̄mk+i = ūi, for i = 1, 2, ..., m = 0, 1, ....

This sequence satisfies the Eq.(4.1) and is periodic with period k.

Corollary 4.3.1 Assume that {pn} is a convergent sequence and

lim
n→∞

pn = p > 1.

Then every solution {xn} of Eq.(4.1) is convergent and

lim
n→∞

xn = p+ 1.

Proof. {pn} is bounded so {xn} is bounded and persists according to (4.1.1).

And we have

λ = lim inf
n→∞

xn and µ = lim sup
n→∞

xn.

And

p = lim inf
n→∞

pn and q = lim sup
n→∞

pn.

And from Lemma (4.1.2) we have that

pq − 1

q − 1
≤ λ ≤ µ ≤ pq − 1

p− 1
.

{pn} is convergent so p = lim infn→∞ pn = lim supn→∞ pn = q. Then we have

that

p+ 1 =
p2 − 1

p− 1
≤ λ ≤ µ ≤ p2 − 1

p− 1
= p+ 1.

So we have λ = µ = p+ 1. Then as a result we get limn→∞ xn = p+ 1.
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