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Abstract

This research aims mainly to study properties of three different difference

equations. The first equation is

Tn-1
$n+1:pn+ 5 n:0,1,...,

n

with initial conditions z_; > 0, g > 0, and where {p, } is a positive bounded

sequence,. The second equation is

xk
b
xn+1:An+—x ., n=0,1,..,

q
n

where A,, is a positive bounded sequence, the initial conditions z_; > 0,
xo >0, and p, ¢ € (0,00). And the third equation is

T
$n+1:pn+ ) n:0717"'7

n—1

where x_1 > 0, 2o > 0, and p, is a positive bounded sequence. For each

equation we studied periodicity, stability, attractivity and boundedness.
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Chapter 1

Introduction

1.1 Difference Equations

Difference equation is an equation that defines a relation recursively, in
other words, each term of the sequence is defined as a function of the previous

terms of the sequence. The difference equation of order k is of the form
Ty = f(Tp_1,Tp-2y .y Tn_k), n=0,1,2 .., (1.1)

Starting from a point z for the equation z,,1 = f(z,), you will get the

following sequence

x()’f(IO)? f(f(xo))v f(f(f(xO)))a

This sequence can be written as

o, f(wo),f2($0)7 f3(l‘0),

f(x0) is called the first iterate of xy under the function f, f?(zo) is the second
iterate under f, f3(zo) is the third iterate under f. The set of all iterates
{f"(zo) : n > 0} where f(zg) = z¢ is called the positive orbit of zg, the
orbit will be denoted by O(z).

Difference equations can be classified into different categories according to

one or more of the following properties:

(1) Linear difference equations: an equation is said to be linear if the
function f in Eq.(L.1)) is a linear function.
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(2)

(3)

Nonlinear difference equations: an equation is said to be nonlinear
if the function in Eq.(1.1)) is a nonlinear function.

Linear homogeneous difference equations: a kth-order linear ho-

mogeneous difference equation is an equation of the form

Yntk + P10 Ynak—1 + o+ Pr(n)yn =0,
where pg(n) # 0 for all n > ny.

Linear nonhomogeneous difference equations: a kth-order linear

nonhomogeneous difference equation is an equation of the form

Untk + D1(0)Ynsrk—1 + . + Dr()yn = g(n),

where pg(n) # 0 for all n > ny.

The sequence g(n) is called the forcing term.

Autonomous difference equations: a kth-order difference equation

is said to be autonomous if it is time-invariant, in other words
Ty = f(xn—ly Tp—2y <y In—k)-

Nonautonomous difference equations[8]: a kth-order difference
equation is said to be nonautonomous if the function f is replaced by a

new function g of two variables, ¢ : Z* x R — R, this can be denoted as

Tp = g(na Tp—1yLp—2y -y xn—k)'
In this case the equation is time-variant.

Linear difference equation with constant coefficients: a kth-order
linear difference equation with constant coefficients is an equation of the

form

Ttk + D1Tnik—1 + DoZnik—2 + ... + Dpn = g(n),

where p;’s are constants and p, # 0 for all n > ny.
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(8) Linear difference equation with nonconstant coefficients: a kth-
order linear difference equation with nonconstant coefficients is an equa-

tion of the form

Tyt + D1(N)Tpgk—1 + D2(N)Tnik—2 + ... + pe(n)z, = g(n),

where p(n) # 0 for all n > ny.

1.2 Sequences

A sequence x, of real numbers is a function defined on the set of natural
numbers whose range is contained in the set of real numbers.
This can be abbreviated as
f:N—=>R.

Definition 1.2.1 [J/The limit of a sequence
We say that a number x is a limit of the sequence x,, if for each € > 0, there
exists a natural number K such that for all n > K we have |z, — x| < €. In
symbols

(e > 0)(IK)(n > K)(Jz, — | < €).

Definition 1.2.2 [5/Bounded sequence
A sequence x,, of real numbers is said to be bounded if there exists a positive

real number M such that |z,| < M for all natural numbers n.
Definition 1.2.3 [18/ If z,, is a sequence, we define the limsup x,, as

lim sup x,, = inf sup xx.
nok>n

The liminf z,, is defined as

liminf z,, = sup inf x.
n k>n
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Definition 1.2.4 Let x,,, T, be two sequences, we say that the sequence x,

converges to the sequence T,, in symbols

Ty — Tp

. Tn
lim — = 1.
n—oo Iy,

The sequence {z,} is said to be m-periodic if x4 = ;.

1.3 Behavior of Solutions of Difference Equa-
tions
The difference equation of order k + 1 is of the form
Tpi1 = [(Tn, Tpo1y ooy Tn_g), n=0,1,2, .., (1.2)
A point 7 is said to be a fized point of the difference Eq. if

flz,z,..,2) =1Z.

Definition 1.3.1 A point T in the domain of f is said to be an equilibrium

point of Fq. if it is a fixed point of f.

Graphically, an equilibrium point is the x-coordinate of the point where the

function intersects the line y = x.

Definition 1.3.2 Stability

i) An equilibrium point T of Eq. 15 called locally stable if, for every
€ > 0, there exists § > 0 such that if {x,}°2_, is a solution of Eq.
with

|v_k — Z| + |12k — Z| + ... + |20 — Z] < 6,
then
|z, — Z| <€, forall n>0.



1.3 Behavior of Solutions of Difference Equations 6

i1) An equilibrium point T of Eq. 18 called locally asymptotically stable
if, T 1s locally stable, and if in addition there exists v > 0 such that if

Tn 0%, is a solution of Eq. (1.2) with
{ }n k
|z_k — Z| + |21k — Z| + ... + |20 — Z| < 7,

then

lim z, = 7.
n—oo

iii) An equilibrium point T of Eq. 1s called a global attractor if, for
every solution {x,}°° _, of Eq. we have

lim z,, = 7.
n—oo

i) An equilibrium point T of Eq. 15 called globally asymptotically stable
iof & 1s locally stable , and x 1s globally attractor of Eq. .

v) An equilibrium point T of Eq. is called unstable if T is not locally
stable.

Let Z be the equilibrium point of Eq. (1.2]), and suppose that f is a contin-
uously differentiable function in some neighborhood of z.

Let the partial derivative of f(ug,u1, ..., ux) with respect to u; be denoted as
_9f

Then the linearized equation of the difference equation around the equilib-

D (z,Z,...,z) for i=0,1,2,... k.

rium point is
Zn+1 = Po’n + P12n—1+ .. + Pr2n—k, n=0,1,2 ...
The characteristic equation of the difference equation about Z is
NAL o — = i A —p = 0. (1.3)
The following theorem is known as the Linearized Stability Theorem.

Theorem 1.3.1 [I1/Linearized Stability Theorem
Assume that f is a continuously differentiable function defined on some open
netghborhood about the equilibrium point x. Then the following statements

are true:
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i) If all roots of Eq. have absolute value less than 1, then the equilib-
rium point T of Eq. 18 locally asymptotically stable.

i) If at least one of the roots of Eq. has absolute value greater than 1,

then the equilibrium point T is unstable.

iii) If all roots of Eq. have absolute value greater than 1, then the equi-

librium point T is a source.

1.4 Banach Spaces

To define the Banach space we must define the norm

Definition 1.4.1 A norm on a linear space X is a function ||.| : X — R,

Vo € X with the following properties:

(a) ||z]| >0,V z € X, and ||z|| = 0 if and only if x = 0.

(b) || x| = [M||z]], Vo € X and X € R.

() e+ yll < llall + lgll, ¥ 2,y € X.

A normed space (X, ||.||) is a space X with a norm defined on it.

Definition 1.4.2 [13] A metric, or distance function on the set X is

d: X xX —R,

where

(a) d(z,y) >0, Vo,y € X, and d(z,y) = 0 if and only if z = y.
(b) d(z,y) =d(y,x), Vor,y € X.

(c) d(z,z) < d(x,y)+d(y,=z), Vr,y,z € X.

A metric space (X, d) is a set X equipped with a metric d.

A metric space X is complete if every Cauchy sequence in X converges to a
limit in X, and z,, is a Cauchy sequence if for every € > 0 there is a natural
number N such that |z, — z,| <€, Vm,n > N.
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Definition 1.4.3 [I3/Banach Space
Let K be one of the fields R or C, a Banach space over K is a normed K-
vector space (X, ||.||) with respect to the metric d(z,y) = ||z —yl|, z,y € X.

Definition 1.4.4 [153] A space X is said to be compact if every open cover-

g A of X contains a finite subcollection that also covers X.
A set S C R™ is convex if and only if Vz,y € S and A € [0, 1];

Az + (1= Ny e S.
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1.5 Periodic Points and Cycles

Definition 1.5.1 [8 Let b be in the domain of f. Then:

(i) b is called periodic point of f if for some positive integer k, f¥(b) = b.
Hence a point is k-periodic if it is a fived point of f*, that is, if it is an

equilibrium point of the difference equation

z(n+1) = g(z(n)),

where g = f*.
The periodic orbit of b, O(b) = {b, f(b), f2(b), ..., f*1(b)}, is often
called a k-cycle.

(ii) b is called eventually k-periodic if for some positive integer m, f™(b) is

a k-periodic point. In other words, b is eventually k-periodic if
fED) = f (D).

Graphically, a k-periodic point is the z-coordinate of the point where the

graph of f* meets the diagonal line y = z.
Definition 1.5.2 [8/ Let b be a k-period point of f. Then b is:

(i) stable if it is a stable fized point of f*.

(ii) asymptotically stable if it is an asymptotically stable fized point of f*.
(iii) unstable if it is an unstable fized point of f*.

The cycle {z(0) = b,z(1) = f(b),z(2) = f2(b),....xz(k — 1) = f*1b)} is
called a k-cycle.
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1.6 Oscillating Sequences and Semicycles

Definition 1.6.1 [7] A sequence {x,} is said to oscillate about zero or sim-
ply oscillate if the terms x,, are neither eventually all positive nor eventually

all negative.

Definition 1.6.2 [7/ A sequence {x,} is said to oscillate about {y,} if the

sequence {x, — y,} oscillates.

Definition 1.6.3 [7] Assume that {x,} and {y,} are positive sequences, we
define a positive semicycle of {x,} relative to the sequence {y,} as a string
of terms Cy = {141, Tiy2, ooy T} Such that x; > y; fori =14 1,...,m with
[ > —1 and m < oo and such that either [ = —1 orl > 0 and z; < y; and

either m = o0 orm < o0 and Tyt < Yma1-

Definition 1.6.4 [7] Let {z,}, {yn} be two positive sequences, A negative
semicycle of {x,} relative to {y,} is a string of terms C_ = {z41,..., 21},
such that x; <y; fori =34+ 1,7+2,....0, with j > —1 and | < oo and such
that either j = —1 or j > 0 and x; > y; and either [ = oo or [ < oo and

Ti41 = Yi1-

1.7 Big o notation

Definition 1.7.1 Let f(x), g(z) be two functions defined on R or C. Then
we say that f(x) = O(g(x)), © — oo, if there is a positive constant M such
that

|f(2)] < Mlg(x)| for all z = .

Proposition 1.7.1 If the limit

/@)
(

=(C < +0
g()

lim
r—ra

then f(z) = O(g(x)).
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f=0(g) if f is of order not exceeding the order of g.
In order to use the big O notation, it is essential to understand how the O

symbol behaves within a formula. Here we have a list of its properties
O(f(z)g(x)) = O(f(x))O(g(x))
O(f(x)) + O(g(x)) = O(|f (x)] + [g(x)])
f(@) +0(g(x)) = O(f ()| + [g(x)])
f(x)O(g(x)) = O(f(x)g(x))
O(cf(x)) = O(f()), ceR c#0

Example

Show that .
L) :O(i) n — oo, forne Z*
t2 4 n? tn

Solution

Without loss of generality we assume ¢t > 1. We have that ¢* +n? = (t —
n)? + 2tn > 2nt, then

n "< 1L _1/1y_1
t24+n2) — (2tn)n 20 \tn) T tn’

(t2 Zn2)n - O(tin)

Using proposition ((1.7.1)) we can calculate the following examples

Then

6 = O(1) at any point
32° = O(2%) at any point
sinz =0(1) as © — 0

sinx = O(z) as © — 0.

1.8 Taylor Series and polynomials

Definition 1.8.1 Let f be a real function defined on a domain D. If the

function is continuous at every point in D we say that it belongs to C°(D).
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If the function is differentiable n times at each point of D (excluding the
boundary) and the n — th derivative is continuous , we say that the function
is in C™(D). If the function can be differentiated infinitely many times we
say that it is in C>°(D).

Theorem 1.8.1 Taylor’s Theorem
If a function f(x) belongs to C" (D) and o € D, then the function can be

approximated with a degree n polynomaial of this kind

L ) 4
Pn,a@):zf ).!( )(x—a)Z

]

Theorem 1.8.2 Let f be a real function in C™([a,b]), then for every a €
(a,b) there is a function h,(x) such that

f(z) = Pn,a(x) + () (2 — )"

and

lim A, (z) =0

T—a

Theorem 1.8.3 In the setup of the previous theorem, for every x € (a,b)

there is a point n between x and o such that

n+1
ho(2) (2 — )" = &T?))!(x )
Taylor Series
If a function (z) is C*>° over some interval [a,b], the Taylor series centered
at some point « € (a,b) is

1)y,
f) =3 0

n=0

Remainder of Taylor polynomial as a big O

Proposition 1.8.1 Let f(x) be a function in C""([a,b]) and « is a point

in (a,b), the Taylor expansion can be written in big O notation :
f(z) = Pya(z) + O((x — a)")

For example,
2

e$:1+x+%+0(x3).



Chapter 2

On The Difference Equation

Tn—1
Tp4l = Pn T+ g—n

Many authors studied the behavior of the difference equation

Tp—1

Tpt1 = Pn + , n=0,1,..,

n

where p, is a positive bounded sequence and the initial values z_,z¢ are
positive and some of its extensions. We note that the papers [1],[7],[12],[20]
were devoted for these equations.

In this part we are interested in studying boundedness, persistence, un-
bounded solutions, attractivity and the global asymptotic behavior of posi-

tive solutions of the nonautonomous difference equation

Tn—1

Tpil = Pn + , n=0,1,.., (2.1)

n

with initial conditions z_; > 0, g > 0, and where {p, } is a positive bounded

sequence, with
liminfp, =p >0 and limsupp, = ¢ < c©. (2.2)

n— n—00

Theorem 2.0.4 [7] Assume that all the roots of the polynomial

P(t) =tV — stV — . — sy,
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where s1, So, ..., Sy > 0, have absolute value less than 1. If {x,} is a nonneg-

ative solution of the inequality
TN < S1TpteN—1 1+ oo T+ SNTn + Yn,
where y, > 0, forn = 0,1, ..., then the following statements are true:
(i) If 37 o yn converges, then Y > x, converges.
(i) If {yn} is bounded, then {z,} is bounded.
(i3i) If lim, o y, = 0, then lim, o x, = 0.

Theorem 2.0.5 [7/(Brower Fized Point Theorem)

The continuous operator
A:M—M

has at least one fixed point when M 1is compact, convex, nonempty set in a

finite dimensional normed space over K(K =R or K= C).

2.1 Boundedness and persistence

We will dedicate this section for studying boundedness and persistence of
Eq.(2.1)) given Eq.(2.2).
Lemma 2.1.1 [7] Let {z,} be a solution of (2.1), also assume that is

satisfied, then the following are true:
(i) If p > 0, then {x,} persists.
(i1) If p > 1, then {x,} is bounded from above.

Proof. (i)It is obvious from the assumptions of Eq.(2.1)) that {z,} > 0 for
all n = —1,0, ..., this means that x;—;l > (0, which concludes that

Tn-1

Tn4+1 = Pn + > Dn-

n

So we obtain liminf, ,. x, > liminf, .. p, = p > 0, which implies the

persistence of the sequence {x,}.
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(ii) In this part we aim to show that {z,} is bounded from above.
From part(i) we know that x,, > p,—1 > p — € > 1, for sufficiently large n,
and for € > 0. Using Eq.(2.1)) we get

Tp—1 Tpn—1
Tn4+1 = Pn + - < Pn + = .
Tn, p—€

Referring to Theorem ([2.0.4)), {z,} is bounded since {p,} is bounded. =

Lemma 2.1.2 [7] Assume that Eq.(2.9) is satisfied and p > 1, and let {z,}
be a solution of Eq.. If

A =liminfz, and p = limsup z,,
=00 n—00

then
pq—1 pq—1

q—1 p—1
Proof. Let ¢ > 0, then for n > Ny(e), we have A — ¢ < z,, < p+ € and
p—€<p, <qg+e Then

<A<u< (2.3)

Tp_1 A—¢€

n+l = Pn >p— ) 24
Tpt1 P‘i‘xn Zp €+/~L+€ (24)
and N
T €
Tpy1 = Pn + 1§Q+€+ﬂ : (2.5)
T, A —¢€
As n — 0o, we have
A—e€
A>p—e+ , 2.6
>p e (2.6)
and N
€
u§q+e+i_. (2.7)
It is known that € > 0 is arbitrary, hence,
A
A Z b + )
14
and
14
< —.
Consequently,
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and
Ap—gA < .
So we get
pp + A < Ap < gh+ p.
Hence,
pp — < gh = A,
and so
p(p —1) < Mg — 1),

then . \ .

K < 4= and — > p;‘

AT p—1 w—oqg—1

For n > Ny, from Eq.(2.4) and Eq.(2.5) and using Taylor’s expansion at
e =0 we get

Tp+1 Zp_€+

I
=p+—+0(e)
Zp—+ q% + O(E)
pg—pt+p—1
0
P o)
pg—1
= O
40
To explain the calculations above we will use Taylor’s expansion of the func-
tion f(e) =p—e+ ;\;Z centered at € = 0 which is
B —
B f// ,
=p+—+f (0)6—1—5(0)6 +
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and
_|_
wﬁ4§q+e+ﬂ—f
A—e€
—q+5+0()
qg—1
< ——+0
SA S (€)
pqg—q+q—1
= @)
400
pqg—1
= O(e).
0
Similarly,

. £(n)
flo =3 L0 gy

n.

B f
:q—FX—Ff(O)E—FE(O) 24

= q+5+0().

€ > 0 is arbitrary, as n — oo we achieve the result which is

n=0
1"

A>pq—{

e

and .

<Pt

p—1

So we get

Pi=l )<
q—1 p—1

Theorem 2.1.1 |7/ Consider the interval I = [(éDQQ—_S)’ (fPQ__S)] where
1< P<p,<Q, forn=0,1,... If {x,} is a solution of Eq. such that

x_ 1,29 €1, thenx, €I, forn=0,1,....
Proof. We will use mathematical induction. Now,

xr_
Zo

(PQ-1) (PQ-1)
(@-1) 7 (P-1)

It was assumed that z_1, zg € [ = | | which concludes that
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18

8

k
L
IN
3
g

and

o1 > Q-1
rg —

By substituting these two inequalities in (2.8)) we get

T_1

Ty =po+—

Zo

fw?

P-1

=Pt pgyy

@D

(PQ-1)

P10

(PQ-1)

@D

_ Q-1

_Q+P—1

_PQ-Q+Q-1
N P-1

_PQ-1

P—-1"

<@+

and

T
T1=po+ —
Zo
(fQ*%)
-1
=Pt gy
(P-1)

2 P+ oy

P-1)

P-1

— P4+

+ o1

 PQ-P+P—1
_ oo

PQ -1

Q-1
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So x1 € I. Assume the result holds for k£ = 2,3, ...,n. Now, we aim to prove
the result for k =n +1

T
Tn4+1 = Pn + !
Tn
(fQ*;)
P—1
<Q+ Ggy
(@-1)
_pnL @1
=90t
_PQ-Q+Q -1
B P-1
_PQ -1
- P-1"
and
Ty
Tpt1 = Pn + :
Tn
(é’Q—%)
Q-1
= P+ g
(P-1)
P—-1
=P+ —
+ 0—1
PQ—-P+P—-1
Q-1
_PQ-1
= 0-1
So Ln+1 el
We conclude that z,, € I, for alln = 0,1, .... ]

2.2 Existence of unbounded solutions

In this section we will introduce sufficient conditions for the existence of
unbounded solutions of Eq.(2.1)).

Lemma 2.2.1 [/ Consider Eq.(2.1). Then the following are true:

(i) Suppose there exists 0 < b < 1 such that 0 < pa,+1 < b. Choose
r_q1> ﬁ and 0 < xqg < 1. Then

Top_1 > and 0 < x9, <1 for all n > 0.

1-10
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(ii) Suppose there ea:z'sts 0 <b <1 such that 0 < py, < b. Choose 0 <

r_1 <1 and xg > Then

1 1-b°

1
0< 291 <1 and xo, > T3 for all n > 0.

Proof. To prove this lemma we will use mathematical induction.
(i)Assume that _; > = and 0 < x5 < 1. Now,

x T_ = 1

= po + x—ol x—ol > 1Tb 1
and
0<$2=p1+@<b+%=b+1—b:1.

T 3
Assume that the result holds for all £ = 3,4,....n — 1. In other words
Tog—1 > ﬁ
satisfied for k = n.

and 0 < x9, < 1. Now, we need to show that the result is

1
Ton—3 Ton—3 1-b 1
Top—1 = Pan—2 + > > —

Ton—2 Ton—2 1 1—

and

Loy — 1
x2n:p2n—1+ 2 2<b+T:b+1—b:1
L2an—1 1%

Consequently, o, 1 > ﬁ and 0 < x9, < 1, for all n > 0.
(ii)Assume that 0 < z_; < 1 and 29 > =5 . Now,

1
0<x = po+—<b+—<b+——b+1—b:1

Lo Lo b
and
Zo Lb 1
DD b -
—h + T T 1 1-0b
Assume that for k = 3,4,....,n—1, 0 < w91 < 1 and w9, > —. Now, for
k=n )
Top—
0 < xop—1 = Pan—2 + 2 3<b—|—T:b+1—b:1,
Ton-2 1%
and )
Ton—2 Top—2 b 1
Ton = Pon_1 + > S ey
? Pan=t Lon—1 Ton—1 1 1-0
Then 0 < 29,1 < 1 and zg, > ﬁ, for all n > 0. [ |
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Lemma 2.2.2 [7] Consider Eq. and suppose that either

0 <popi1 <1 and lim po,i1 =0 or 0 <p9, <1 and lim py, =0
n—00 n—o0
Then there exist unbounded solutions to Eq..

Proof. We will use the mathematical induction to prove the result.
Case 1 Assume that

0 <pops1 <1 and lim py,1 = 0.
n—oo

Then there exists 0 < b < 1 such that ps,11 < b. Choose

1
x_1>ﬁ, and 0 < 2o < 1.

According to Lemma [2.2.1] we have

Topn—1 >

1
- and 0 < xq, <1 for all n > 0.

Since lim, ,o, pony1 = 0, there exists N > 1 such that n > N — 1 and

b
Dan+1 < 3.

ToN-2
Ton = Pan—1 t+

<b+1 _b+1—b_2—b
Tono1 2 T 2 1 2

TaN-1 ToaN-1 1—-b 2 1
ToN41 = Pon + > > o = (—) —.
ToN TaN QTb 2 — b
b

b/ 1—
+ ToN < b + 1 b —|— 1 — b 2 —
€T = — _— = = —_—
2N+2 = P2N+1 Toni1 9 1ib 9 1 9
2 1 2
ToN+1 TaN+1 (247) 1—b 2 1
= > > = .
TaN+3 = PaN+2 T Tanis | Tanes ng <2 — b) 1-b
ZE2N+2 b 1 b 1 — b 2 — b
= <-4 =4+ —=—
TaN+4 = P2N+3 T Tanis 2 + 73 T 9
2 \2 1 3
To2N+3 ToaN+3 (sz 1-b 2 1
= > > = .
TIN+5 = PaN+4 T I ng (2 — b) -0

Assume that for n > N

2—b ( 2 )”‘N“ 1
Top < 5 and o1, > | —— —
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Now, for n 4+ 1 we have
+:L’gn <b+ 1 b+1—b 2—b
i n = n —_ _— = — RN _—,
N R e 2
and
2 \n—N+1 n—N+2
Tont3 = Pont2 iiad > Tonil > (ﬂ) 16 _ (—2 > : —1
" " Ton+2 Ton+2 27_1) 2—-0 1-b

Then the solution is unbounded.
Case 2 Assume that

0<poy, <1 and lim py, = 0.
n—oo
Then there exists 0 < b < 1 such that py, < b. Choose
0< <1 and > L
T_ and x —_
1 U

According to Lemma [2.2.1| we have

1
0 < 291 <1 and xy, > 13 for all n > 0.

Since lim,,_,o p2, = 0, there exists N > 1 such that for n > N — 1 we have

b

DPan < 2"
1
ToN— ToN_ Epy 1
Ton = Pan_1 + aN-2  TaN-2 T '
TaN-1  TanN-1 1 1-b
ToN— b 1 b 2—b
ToN+1 = PoN + 2N1<——|——1 =—+1-b=—.
1
TaN ToN s 2 1
TaN+2 = PaN+1 T > > — :(—) —
- T any T @ang b 2—-b)1-0
x b 1 b 2—0b
ToN4+3 = PaN+42 + 2 < st =s+1-b=——.
Tont+2 2 15 2 2

2 1 2
Tan+2  TaN42 (5%) T _ < 2 ) 1
TaN+3  TaN43 b 2—-0) 1-b

b 1 b 2-0b
x2N+3<_+T:_+1_b:—'

TIN+4 2 1% 2 2

ToN+4 = PoNt3 T

ToN+5 = Do2N+4 T
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2 3
TIN+4 5U2N+4 (_b) 2 1

ToN+6 = PaN+5 T > g )
TaN1s 5B2N+5 b 2—-0) 1-b

Assume that for n > N,

(2 )“N 1 2—b
Top > 1 and Top11 < ——.

2-b —b 2

Now, for n 4+ 1 we get

2 \n=N 1 n—N+1
Tont2 = Pont1 + el > T2n >(ﬂ) ﬁ:< 2 ) +—1
" " Ton+1 Ton+1 27_17 2—0 1-b
and
TaN+1 b 1 b 1-5b 2—-b
TaN+3 = PanN42 + <sct+—vT=st+t—F"=—77.
TaN+2 2 _b 2 1 2
Then this solution is unbounded. ]

Theorem 2.2.1 [7] Suppose that 0 < p, < 1 and there exists 0 < b < 1
such that for all n either

Pant1 < b or pa, <D

Then there exist unbounded solutions to Eq..

Proof. Case 1 py,11 < b

If ZZOZO Pon < 00, then lim,,_,, p2, = 0, so there exist unbounded solutions
according to Lemma

If 07 ) pan = 00, choose

T_q > and 0 < zg < 1.

1
1-b
Referring to Lemma (2.2.1) 0 < 25, < 1 for all n > 0, and

1

TR 0T T 1 b
T pO"’ﬁ 1
$3:p2+;2>p2+f—p2+170+m
p2+po+ﬁ

1
=pst+p2t+pot —7.

T3
Ts =Ps+ — >ps+t =

T4 1
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Assume that for k =n — 1,

n—1 1

Top_1 > —
o2n—1 p2h+1_b
h=0

We need to prove it for £ = n. Now,

Ton—1 Zh P2h +
Ton+1 = Pon + > Pon + 0 = b ZP% + —
Lon

It is obvious that this subsequence is unbounded, so we have unbounded so-

lutions to Eq.(2.1)).

Case 2 py, <D

If Y g Pant1 < 00, then lim, o pany1 = 0, so there exist unbounded solu-
tions according to Lemma [2.2.2]

If Ziio Pant1 = 00, choose

1
0< <1 and > —.
r_1 and Io 1—b

Referring to Lemma [2.2.1| we have that 0 < x9,,7 < 1 for all n > 0.

T =D +@> —l—ﬁ: +L
2 1 ) P 1 P 11—
1
To D1+ 15 1
Ta=p3+ —>pst+——— =p3tpr1+—.
XT3 1 1-b
x4 p3+p1+ﬁ 1
Te=ps+—>ps+—————=Dp5s+P3+pP1+—.
T5 1 1—-0b
Assume that for k =n — 1,
n—1 1
oo > i+ —
Tan—2 ;p% 1+1—b

We need to prove this for k =n

Ton—2 S ch 1+
Top = Pon—1 + - > Pop—1 + : 1 1% szh 1 + —
2n—1

It is clear that there exist unbounded solutions. ]
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2.3 Attractivity

In this section we will study the attractivity of Eq.(2.1). If z,, is a positive
solution for Eq.(2.1) we are interested in finding sufficient conditions such

that this solution attracts all the positive solutions x,, of the equation, which

means that
Ly —> Ty
Let
Yo = = 10,1, ...
Tn
From this we get
Ty, = Tpln.

Substituting this value in Eq.(2.1]) we get

:Z‘nflynfl

Tpt1Yn+1 = Pn T+ ——
TnYn

pn _'_ irj—l Yn—1 pn + Tn—1Yn—1

y — Tn Yn In Yn
+1 = - 7
So we get .
pn + -xvjfl Yn—1
L T J:;-,nj : (2.9)
n =

Lemma 2.3.1 [7] Let Z,, be a positive solution of Eq.(2.1). Then the fol-

lowing are true.
(i) Eq.(2.9) has a positive equilibrium solution § = 1.

(i) If for some n, yn—1 < Yn, then yny1 < 1. Likewise, if for some n,
Yn—1 = Yn, then yni1 > 1.

(iii) Every semicycle, except perhaps the first, of an oscillatory solution of
Eq. consists of exactly one term.

Proof. (i)

- Y 1
YTt

T

Pot Y
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So Eq.(2.9) has a positive equilibrium solution which is 1.
(ii) Assume that for some n, y,_1 < y, so y;—‘l < 1. We need to show that

Yn+1 < 1. NOW,

pot B () parfm(l) p+ i
— < n P n
Pn+ 2t Pn+

Yn+1 = Tp—1 Tn1
Dn + =

n
Tn Tn

S0 Ypi1 < 1.
In a similar method we can prove the second part. Assume that y,_1 > yp,

as a consequence % > 1. Now,
n

ot o () Jpt () pet B

T xZ

ot T Pt pet

Tn Tn

Yn+1 =

So Ypi1 > 1.
(iii) We have two cases:
Casel:Assume that y, 1 < 1 and y, > 1, then % <1, which implies that

pn_i_fg_;l(yz’_;1> <pn+£;;1(1) 7pn+ig;1

Pot Tt T pat T pat

Tn

= 1.

Yn+1 =

Tn—1
Tn

Consequently, the positive semicycle contains only one term.
Case2:Assume that 3,1 > 1 and y,, < 1, then % > 1, which implies that

Tp— Yn— = _
Pt 5 (Tf) Il vl O N s .
e T e

Tn T In

Yn+1 =

Consequently, the negative semicycle contains only one term.
According to the two cases every semicycle except possibly the first one

consists of only one term. [ ]
Lemma 2.3.2 Every nonoscillatory solution to Eq. converges to 1.

Proof. Let {y,} be a nonoscillatory solution of Eq.(2.9). We have two
possibilities either

Yo <1 or y, > 1, for n > Nj.
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Without loss of generality assume that
yn > 1 for n > Nj.

Obviously y,_1 > y,, for n > Ny. To prove this assume the contrary, in other
words assume that there exist k > Ny such that y,_1 < yi, so y’;—: <1, then

we have

pet 2 () N U

Yk+1 = 7 -
Di + D+ P+

T

k—1 Th—1 k—1
Tk Tk Tk
This gives that y,y1 < 1 which contradicts the assumption. As a result,
Yn—1 > Yn. It’s clear that {y,} is decreasing and bounded below by 1, so it

converges . Assume that lim,,_, v, = [, we need to prove that [ = 1.

n— 1' nN—oo JN— l
lim Jot = Mmoo et Ly

Then, for € > 0 and for sufficiently large n we have

Yn—1
Yn

—1‘<e.

Then,

s — 1= |1 1‘ S
Pn+ % Pn+ F—
Tn-1Yn-1 _ Tn-1 Tn—1 Yn1 Yn1
Tn Yn Tn Tn n— n—
= pn+jg;1 = pn“f‘ig;l Un -1 < " —1’<€.
Now, for n > Ny
|yn+1 - 1| <e€
Consequently,
lim y, = 1.
n—o0

Theorem 2.3.1 [7/ Assume that
p>1andg<plp—1)+1,

and let {Z} be a particular positive solution of Eq.. Then for all positive

solutions {z,} of Eq.(2.1),

Ty —> Ty
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Proof. If z, = T, then lim, ,oc y, = lim, o 3 = 1, where {y.} satisfies
Eq.. It is enough to show that lim,, ..y, = 1. In this theorem we will
focus on the case where {y, } oscillates about the equilibrium solution 1, since
the other case was studied in the last Lemma.

Let’s consider the function

_ p+is

g(p,t,s) = pawE (2.10)
for p, s, t > 0.
g (p+O)=(p+ts)(1) (t—ts) t1—s)
Ip (p+1)? (p+t)?  (p+1)*
and
99 _ (p+t)s— (p+ts)(1) _pstis—p—ts _ps—p :p(s— 1)
ot (p+1)? (p+1)? p+t)?  (p+t)?

From these derivatives we conclude that
(1)g(p,t,s) is increasing in p for s < 1.
(2)g(p, t, s) is decreasing in p for s > 1.
(3)g(p,t,s) is increasing in ¢ for s > 1.
(4)g(p,t,s) is decreasing in t for s < 1.

Without loss of generality, there exists an integer Ny such that
Yor < 1 and yor1 > 1 for k > Nj.

This assumption is based on the fact that all semicycles excluding the first

have only one term. Now, let

v = limsupy, and n = liminfy,.
n—00 n—0o0

From Eq.(2.9) and Eq.(2.10)), we have

Tok—1 Yok—1
Yok+1 = g(p%, p )

)
2k Yok

In addition, and with reference to Lemma ([2.1.2)), for € > 0 and & sufficiently

large we have yz’;—: > 1, pop. > p— € and f;’“T;l < f\b—‘:, recalling that

A =liminfz, and p = limsup x,,.
n—0oo n—00
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It is obvious that y;4q is increasing in *2:=1 and decreasing in py, when
+ Tok

#2k=1 ~ 1. Then,

Y2k

M€ Yop—1
Yok+1 S g(p — € )

A—¢€ Yo

_ pte Y2k—1

_ p—et A—€ Yok
o pte
p_€+ >\_€

_ pteyte

p €+ A—e n—e
pte
R

Hence,
_ pteyte
p €+ A—e n—e

v = limsup o1 <

Depending on Lemma [2.1.2} it is true that § < fﬁ, e > 0 is arbitrary, so
ry
P
p+5
a=1ly
< p p—1n
= —1
P+ fﬁ
oy oa-ly
_ ™ p—1n
o =1
2
IR =N
-1
n (P + fﬁ)
Then,
1 q—1
m+a7 ey =17
m =< S +u+ =y (2.11)
p+I= ptimz pti-
Similarly, B
Lok Yok

Yok42 = 9(P2k+1, P )
Tok+1 Y2k+1

for € > 0 and £k sufficiently large we have yi’jﬁ < 1, then yox 4o is decreasing

Zok ; ; ; Zok pte
n - nd increasing in Iso we h —c¢and = < )
T @ d increasing in poxy1, also we have por 1 > p — € and s S5
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Hence

Tok Y2k
Tok+1 Y2k+1

2k
Tok+1

nt€ Yo

)
A—e€ Yok+1

_ pte Yok
p—e+ A—€ Yok+1

_ pte
p— €+ 5=

_ pten—e
p €+ A—e v+e

_ pte
D — €+ 5=

DP2k+1 +

Yok+2 =

DPok+1 +

> g(p — e,

— pten—e
p—e+ A—e y+e€

_ pte
p—€e+ 5=

n = liminf yop 11 >
k—o00

e > 0 is arbitrary and according to Lemma [2.1.2] £ < }%, then

Hence,
-1
W>m+§jn: ol o=
ToptiE p+iE pt+iH

From Eq.(2.11) and Eq.(2.12) we have

un u7
e E
P+, PT,3 P+, Pt
Let
p =
_ _ p—
a= pEd b= T
Pt Pt o=
Hence,

ay +bn < yn < an+ by.

(2.12)

(2.13)
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Then,
(a—b)y < (a—b)n
—1 —1 (p—1)—q+1
SRS = S = U= S (et Yk et S
- g=1 g=1 a=l " p(p=D4g-1 — — :
ptis ptim ptln MR pp-1)+g-1

since p > 1 andg < p(p—1)+1,s0 v <nandn < ~. Hence v = 7 and

limy, 00 Y = limy, 500 ;—: = 1. Consequently,

Ty — Ty

2.4 Applications

In this section we aim to show some applications of the results discussed

previously.

Definition 2.4.1 [7] We say that {p,} is periodic with prime period k if k

15 the smallest integer such that

Prnak = Pn for n=—1,0,....
Assume that {p,} is periodic with prime period k.

p = liminf p,,
n—oo

and

g = lim sup p,,.

n—o0

Lemma 2.4.1 [7] A necessary condition for the existence of a periodic solu-
tion {z,} of Eq.(2.1) with prime period k is that {p,} is periodic with period
k.

Proof. Assume that the solution {z,} is a periodic solution with prime

period k, this means that x,.x = z,, forn = —1,0, ....

Tp+k—1
Tntk+l = Pntk T —.
Tn+k
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Then,

Tn+k—1 - Tp—1 o

Prntk = Tntk+1 — = Tp+1 — = DPn,
Tp+k Tp

so we obtained that p, x = p,, which means that p,, is periodic with period
k. [ ]

Theorem 2.4.1 [7] Assume that {p,} is periodic with prime period k, and
let 1 < p < q. Then the following statements are true:

(i) There exists a positive periodic solution {Z,} of Eq.(2.1) with prime
period k.

(i) If p>1 and g < p(p—1)+ 1, then the periodic solution {Z,} is unique
and attracts all positive solutions of Eq., that s,

lim 2% =1 (2.14)

n—o00 T,

for all positive solutions {x,} of Eq..

Proof. (i)We need to show that Eq.(2.1]) has a periodic solution with period

k, it suffices to show that the following system has a positive solution:

1 =pr+

Tr—1
T

T2 =p + &

1

— X
T3 =p2+

— Tk—2
Tk = Pr-1+ 5.,

Define a function F : Ri — Ri such that

Uk—1 Ug Uk —2
7p1+_7"'7pk71+ ) .

F(Ul, ,uk) = <pk + i
U Uy Uk—1
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Also define an interval I such that I = [’;qT_ll, ’;qT_ll]. Now, we need to show

that I* is invariant under the function F. If uy, ..., u; € I, we have

ws pg—l1

pi‘i__JSQ"i_ pill

U; pg—1

qg—1

qg—1

=qg+ —

A E—

_pg—gqgtqg-1
p—1

_pg—1

p—1’

fori=1,..,k j=(t—1) mod k,

since the above system is periodic of period k,

and

for i=1,..,k, for j=(i—1) mod k.

since the above system is periodic of period k.

So p; + Z—] €lfor i=1,..,k j=(i—1) mod k. So I* is invariant under
the function F, in other words F : I¥ — I*, it is obvious that F is continuous
on I*¥, and I* is convex and compact set. Using Theorem m, F has a fixed
point in I*.

Assume that the fixed point of F is (i, ...,ux) € I¥. Define the sequence
{z} by

T =Ug_1, To=1u and Tppy; = u;, for 1=1,...0k, m=0,1,....

It is clear that the sequence {z,, } satisfies Eq.(2.1]) and is periodic with period
k.
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(ii)Assume that p > 1 and ¢ < p(p — 1) + 1 and {p,} is periodic with prime
period k, then

p=@g£@w=g@hﬂ»mﬂq:hgﬁM%zggﬁm}

According to Theorem , lim,, o0 £ = 1 is satisfied for any solution {z,}
of the Eq.(2.1)), it remains to prove the uniqueness of the periodic solution
{Z,}. Assume that {y,} is another periodic solution of Eq.(2.1))with period
k and different from {x,}, since {y,} is periodic with period k then

Ynik = Yn, n=—10,1,....

Since the two solutions are different from each other there exists ¢ such that

:gnk—i-i _ % 7& 1.
Tnk+i X
But this contradicts the conclusion of the theorem which states that

lim,, o0 g—: = 1, then the solution is unique. [ ]

Corollary 2.4.1 [7] Assume that {p,} is a convergent sequence and
lim p, =p > 1.
n—oo

Then every solution {x,} of Eq. 15 convergent and

lim x, =p+ 1.

n—0o0
Proof. {p,} is bounded so {x,} is bounded and persists according to Lemma
211
Recalling that

A =liminfz, and p = limsup x,,.
n—oo

n—oo
And
p = liminf p, and ¢ = limsup p,.
n—00 n—00
By Lemma [2.1.2}
S —
q—1 p—1
Now, p,, is convergent so p = liminf,,_,, p, = limsup,,_, . P, = ¢. Then
2-1 21
p+1="1 1§A§u§p 1=p+1

So we have that A = = p + 1. Hence, lim, .z, =p+ 1. [ |



Chapter 3

On the Difference Equation
p

x

—1

LIn+l1 = An + —Zq
mn

This chapter is dedicated to study properties such as asymptotic behavior

of the positive solutions, periodicity, and stability of equation

p
Ty

Ty = Ap+ 2L n=0,1,.., (3.1)

T
where A, is a positive bounded sequence, the initial conditions x_,, xo are

positive constants, and p, ¢ € (0,00).
The same equation were studied in papers [16], [17], [19].

3.1 Asymptotic behavior of the positive so-

lutions

We aim in this section to find conditions so that if Z,, is a fixed solution

of the equation
Ty 1
Tnpr = Ap+ 2L n=0,1, ...,
Tn

then all solutions of (3.1]) tend to the fixed solution Z,. Let
Tn

L= n=-1,01,... 3.2
Yn =20 (3.2)



3.1 Asymptotic behavior of the positive solutions 36

Consequently,
Ln+1
Yni1 = L p=-1,0,1,....
Tn+1
From (3.1)) we get
rom (1) we g )
A, + ;il
Yn+1 = P
nt T

Relation (3.2) gives that x, 1 = Z,_1y,_1 and x,, = T,Yy,, then

+=P P
A xvj,—l Yn—1
Ynt+1 = P : ( : )
n—

A+ 27

Lemma 3.1.1 [16] Let y,, be a particular positive solution of (3.3).
(a)Suppose that there exists an m € {0,1,2,...} such that

Yom—1 = 1, Yom < L. (3.4)
Then
yo o >1, ya o >1, yh <1, gl <1, n=m+1m+2,... (3.5)
(b)Suppose that there exists an m € {0,1,2,...} such that
Yom—1 <1, Yo > 1. (3.6)
Then
g <1, ys <1, yh >1, yi >1, n=m+1m+2,.. (3.7

Proof. In both cases (a) and (b) we will use mathematical induction.
(a) We have the relation

Yn+1 =

Now, for n = m + 1 we have

=P D
Am+1 + igm _gm
. m—+1 ym+1 (3 8)
Ym+2 = P : .
Am+1 + qm

Tyt
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If we replace m by 2m — 1, we get

~p P
Lom—1 Yam—1

AQm + 74

q
2m Yam

Yom+1 = I
A2m + ;11
2m

We assumed that yo,—1 > 1, yo, < 1, and ¢, | > 1, ya . < 1 where p, ¢ are

p
positive constants, then % > 1. So

2m

Yom+1 = =P
2m—1

2m
P
Ay + Z=1(1)

Tom—1

m—

A2m+ 74
2m

>

x _
AQm"‘%

= Sim_ — 1.
A2m + %
S0 Yo > 1, if we substitute n — 1 in place of m we get y9,_1 > 1, which
concludes that y3, ; > 1 and v5, | > 1.

If we replace m by 2m in (3.8)), we get

T Vb
A1 + g2
2m+1 Y2m+1

Agmi1 + 3

+4d
2m—+1

Yom+2 = 5
‘Z2m

We are given that ys,, < 1 and from above we have ys,,,.1 > 1, this implies
P
that 5, <1and y3,., > 1, as aresult 72— < 1.
2m+1

Thus
Thy,

A Yo
m
2m+1 ‘I‘ —q <ygm+1>

Loam+41
A2m+1 + 7
2m—+1
=D
T
Agmy1 + == (1)
2m—+1
< 27
A2m+l + =

Lom+1

7P
Lom

Yom+2 =

Lom+1 1
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As a result, Yoo < 1. It is known that m = n — 1, so we have y,, < 1,
which gives y5, <1, y3, < L.
For n = m + 1 we proved that

Yom1 > 1, Y3, 1> 1, y3, <1, yz, < 1.

Assume the result holds for n = m+k —1, where k is an integer greater than

2, from assumption we know that

Yotmek-1-1 > L Yagmr-11 > L Yomaron) < L Yopmnpy < 1.

Which means that

Yotmir)—3 > L Yamary—s > L Yspnany—2 < L Yopminy—2 < L.

We need to show that the result holds for n = m + k. If we substitute
2(m + k) — 2 in place of n in (3.3) we get

7P D
To(m+k)—3 Y2(m+k)—3

A o+ =
N Am-+k)—2 mg(m+k)—2 yg(m+k)—2
Y2(m+k)—-1 = &, :
Ag(miy—2 + =2
2(m—+k)—2
. ) q
From assumption we have Yaimiky—s > 1 and Yaimary—2 <1

yP
then =3 ~ 1
Y2(m+k)—2

Then

Ag(miry—2 + 3

ig(mﬁ»k)fB (yg(m+k)73 )
2(m+k)—2

q
Y2(m+k)—2

Yo(m+k)—1 = .
2(m+k)—3
Agimiky—2 + 10—
2(m+k)—2

ZP
Ad(mik)—2 + W(l)
2(m+k)—2 _ 1

>

~P

Lo(m-+k)—3
Ad(mik)—2 + —g—cq( )

2(m+k)—2

So we conclude that yg( > 1 and yg( > 1, which gives that

m+k)—1 m-+k)—1

ygnfl > 1 and ygnfl > 1
Now, if we replace n by 2(m + k) — 1 in (3.3]) we get the following equation

+P D
Lo(m+k)—2 J2(m+k)—2

Agimik)—1 + =

q
Lo(m+k)—1 Y2(m+k)—1

Ya(mk) = 5 (k)2
Agimiry—1 + 70—
2(m+k)—1
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From the assumption we have that yg(m thy—2 < 1 and from the previous

P
. . Ya(m+k)—2
i ion have y? 1 so === < 1.
discussion we have Yo(mik)—1 > 1 80 . <
Then
=P D
Lotm+ik)—2 [ Y2(m+k)—2
A2(m+k)—1 + 7 vd
o 2(m+k)—1 2(m+k)—1
Y2(m+k) = =
Agimiky-1+ 50—
2(m+k)—1
T k) —2
) —
A2(m+k)—1 + jq—(l)
2(m+k)—1 1
= T (m+k) B
2(m+k)—2
Apimiky-1+ z0——
2(m+k)—1

SO Yo(m+k) < 1, as a result yg(m+k) <1 and yg(m+k) <landgyh, <1,ys <1
since n =m + k.

Then we conclude that

ygnfl > 17 ygnfl > 17 ygn < ]-a ygn < 17 n=m-+ 1Jm+27

(b) In a similar way we can prove the second part of this lemma. Assume

(13.6). Now, replace n by m + 1 in the equation

J— n n
Yn+1 = —P
+ Tp—1
n j%
To get
Th, _ym
Am+1 + —q q
o Tm+1 Ym+1
Ym42 = z2,
Am+1 + 74
m—+1

Now, replace m by 2m — 1 to get
A —I'_ i‘gmfl ygmfl
Y Yim

Thm—1

m—

A2m + 74
2m

Yom+1 =

Y5

We are given that yo,, 1 < 1, Yo, > 1, which gives that =23 < 1. Now,

Yom
=D P
Tom—1 [ Yam—1
A2m + —ZL ( ZL )
o Tom 2m
Yom+1 = —5
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S0 yoms1 < 1, substitute n — 1 in place of m to obtain y,, 1 < 1, then
b <landyd ;<1
If we replace m by 2m in (3.8) we get

~D D
) Yo

A1 + g2
2m+1 Y2m+1

Yom+2 =

7P
Lom,
q

2

Aomgr +
m—+1

T
From the assumption we have that ys,, > 1 and it is true that yo,, 11 < 1
Yom

from the previous discussion, so o > 1. Then we have
2m—+1

P P
Ao + =72 (—y2m )

q
Tam+1 \Y2m+1

Yom+2 = =P
2m

A2m+1 + 7d

2m+41

(1)

igm-{»l o 1

P
Lo

A1 +
>

A L%
m
2m—+1 ilem+1

So we conclude that ys,, 12 > 1, if we write this in terms of n we get yo, > 1,
which implies that y5 > 1 and y3, > 1.

So for n = m + 1 we have

Y1 <1, 93,1 <1, y3,>1, yg, > 1.

Now, assume that the result holds for n = m +k — 1, where m + k — 1 is an

integer and k is an integer greater than 2, so we have

Yotmik-1-1 <1 Yopmie—1-1 <L Yomen-1y > 1 Yopnip_1) > 1-

Which is equivalent to

yg(m+k)73 <1, yg(m+k)73 <1, yg(m+k)—2 > 1, yg(mﬂc)q > 1.

We aim to show that the result also holds for n = m + k, where m + k is an
integer.
Now, replace n by 2(m + k) — 2 in (3.3)) to get

~P p
Lo(m+k)—3 Y2(m+k)—3

Ad(mik)—2 +

—d q
. Lo(m+k)—2 Y2(m+k)—2
Yo(m+k)—1 = =2 .
2(m+k)—3
Ag(miky—2 + 1

2(m+k)—2
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According to the assumption it is true that yg(m s < 1and yg(m e > 1

P
..y _
resulting in —2"*=2 < 1 then
2(m4k)—2

T k)3 [ Ya(mk)—3

m — m -

As(mik)—2 T 57 (yq )
2(m+k)—2 2(m+k)—2

Yo(m+k)-1 = fp( )
2(m+k)—3
Agimiry—2 + 2
2(m+k)—2
~P
x2(m+k)73 1)
—q
Lo(m+k)—2 -1

As(mik)—2 +
<

=P
z

k)—
AQ(m+k)72 + 73('m+ Lo

Lo(m—+k)—2

This implies that ys, 1 < 1 since n = m+k, also we conclude that 5 ; <1
and y3._, < 1.

If we take n =2(m + k) — 1 in (3.3) we get

TS k) —2 Y (k)2

Asmaky—1 + =7

q
Lo(m+k)—1 Y2(m+k)—1

Ya(mk) = 5 (m k)2
Agimaky—1 + zr
2(m+k)—1

The assumption gives that yg( , > 1 and the previous discussion gives

m+k)—
D
q Ya2(m4k)—2
that Yotmik)—1 < 1, so Womin s > 1, then we have
=P D
Totm+k)—2 [ Y2(m+k)—2
A2(m+k)—1 + jq( - < q< :
2(m+k)—1 \Y2(m+k)—1
Yam+k) = o (k)
2(m+k)—2
Apimiky-1+ z0 00—
2(m+k)—1
T k)2
Ag(mik)—1 Tz (1)
2(m+k)—1 _ 1
~ S (m k) B
2(m+k)—2
Agimik)—1 + =
2(m+k)—1

We conclude that ya(m4r) > 1, in terms of n we have that y, > 1, then
yh, > 1 and y3, > 1.
Then we conclude that

vho o<1, yd <1, yb >1, yd >1, n=m+1m+2, ..



3.1 Asymptotic behavior of the positive solutions 42

Lemma 3.1.2 [16/ Consider the function

Floy )= 2 g2 >0 (3.9)

Then the following statements are true:
(i) F is an increasing function in x fory € (1,00) and z € (0, 00);
(i) F is a decreasing function in x for y € (0,1);
(iii) F' is an increasing function in y for any x,z € (0,00);
(iv) F is an increasing function in z for any y € (0,1) and x € (0, 00);
(v) F is a decreasing function in z for any y € (1,00).

Proof. F(z,y,z) = 2%

z4x °
OF _ z(y—1)
or  (z+ )%
oF
oy z+z
OF _x(l—y)
0z (z+x)%

(i) %€ = (Zz(i;Q =0 if and only if z =0 or y = 1 then F is increasing in x

for y € (1,00) and z € (0, 00).

(ii) It is obvious from (i) that F is decreasing in x for y € (0, 1).

(iii) %—5 = ;7 = 0if and only if z = 0 then F is increasing in y for
z,z € (0,00).

(iv) %—I; = g(cz(};)jg) =0 if and only if z = 0 or y = 1 then F' is increasing in z
for y € (0,1) and = € (0, 00).

(v) It is obvious from (iv) that F' is decreasing in z for y € (1, c0).
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Lemma 3.1.3 [16] Suppose that A, is a bounded sequence such that

0 <m =liminf A,,, M =limsup A4, < oc. (3.10)

n—0o0 n—o00

Suppose also that
0<p<Ll (3.11)

Then every positive solution of Eq. 18 bounded and persists.

Proposition 3.1.1 [16] Consider Eq.(3.1) where A, is bounded positive se-
quence such that holds. Suppose also that

O<p+qg<l1, g>np. (3.12)

Let , be a fixed solution of Eq. and x, be an arbitrary solution of

Eq.(3.1). Then
lim y, =1, (3.13)

n—o0

where vy, s defined in .
Proof. Using Lemma(3.1.3|) and relation(3.2))

0 <n=liminfy,, 6 =limsupy, < oo.
n—oo

n—oo
0 < ky =liminf z,, ke =limsupz, < oco. (3.14)
n—oo n—00

We have two cases
Case 1 We suppose that there exists an m € {1,2,3,...} such that either

(3.4) or (3.6) holds. Assume that (3.4]) holds. We obtain for n > m

A f;12)71,71 ygnfl A jgn ygn

om + ST T DL Bl e

o on  Yon o 2n+1 Y2n+1 3 15)

Yon41 = a—:g R y  Yont2 = jg . ( .
Agn + 25 Aopi1 + ==

= =7
Zan Ton+1
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Let’s consider the first equation

A2n +

=D D
Ton—1 Yan—1
—=a . a
y2n

Yon+1 =

A2n

A2n an +

xQn 1y2n 1

x2n y2n

A2n +

E (AQnygn

2n 1

Th,_y
7d
2n

y2n 1)

A2n +

AQnygn +

xQn—l
77

2n

2n 1
y2n 1

ygn (A2n

AQn ygn

=5
Ton—1
++)

Top

2n 1
y2n 1

q __
Yon+1Yon =

A2n +

2n—1
—d
Ton

We assumed that ( is satisfied, as a result ¢4, |, > 1, y3, < 1 implying

that yQ” L> 1.
an
3.1.2

By Lemma Yoni1 1S decreasing in A,

have
mn? + k6P

then On? <
Splmrk) S

Now,

Aopi1 +

mn? + k6P

2" L and so we

and i 1ncreasmg in

ké’

m+k :k_f'

D
q y2n
x2 +1 y2n+1

Yon+2 =
A2n+1

y2n+1

x2n
n+1

_%

7P p
Lop Yon

A2n+l
n+1

—q q
Lon+1 Yan+1

A2n+1 +

q;(AZn—l—lan_Fl + —g o ygn)

Yon+1

P
)

n

Agpyr + =

A27’L+1y2n+1 + —q

q
$2n+1

y2n

Yoni1(Azns1 +

=

12 +1
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We assumed that (3.4)) holds, which means that y5, ; > 1 and y3, < 1, so

D
Y2121 > 1 which implies that
y2n !

A fgnf 1 ygnf 1 ﬂfgn,1
on + z o] Ay, + ( 1)
= >

R 2n i‘gn _ 1
Yon1 = jg . 155 ] )
n— n—
AQn + 7 A2n + 74
2n 2n

which gives that y3,,, > 1, from the assumption we get that y5, < 1 then

D

—yqy?“ < 1. By Lemma [3.1.2| y5,, 42 is increasing in As,,; and decreasing in
2n+1
Ton

j%n#»l

Thus we have

ml? + knP ml? + knP Ky
——— th 01> ——— k= —.
T=9myk) S T TR
Now,
a1 Lor
On? < RO gives On?(m + k) < mn? + kOP.
m+ k
And the equation
07 + knP
ne? > b+ gives 0in(m + k) > mb? + kn?.
m+
Hence 99 4 ke
ma k> MR
01n
Ont(m + k) < mn? + k6".
Then 00 1
q m Y q P
On( g ) < mn? + k6.
Thus,
Onimo?  Onikn?
< mn? + koOP.
Oin * fin — i
Consequently,

mOnTt + kO T InpPT Tt < mn? + k6P,

Multiplying both sides of the preceding inequality by 697! to get

mgq,r/q—l + knp-i-q—l S mgq_lnq + k@p-l—q—l‘ (316)
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And this implies that
mgqanl _ m@qflnq < Lorta—1 _ knP*H]*l.
m@* 17O — ) < k(no)P T (! TP — 91T,
Since n < 6 and p+ q < 1, it is evident that
me*~ 1O — ) < k(o) (!PT -9 < 0 (3.17)

And so we have that n = #, in other words liminfy, = limsupy,, which
n—00 n—00

implies that lim y,, exists.
— 00

n
Now, to determine the exact value of the limit, we have

T 1 Yon
A2n_'_2n12n1

4 q
_ Tg Yo
Yont1 = ;‘2’ ) =
A2n + 5:2
2n
. y>
Using l) 22— > 1, s0
y2n
Zh_1
e
n
Yon+1 > P =L
2n—1
A2n + 1—:5
2n

Thus as n goes to oo, lim, o ¥, > 1. Also we have

A Thy Yoy
2n+1 + 7 q

o 2n+1 Y2n+1
Yon4+2 = —5

Using 1D Y5, < 1 and from above we have that y3,., > 1 so yé’i < 1,

2n-+1
then

=P
Aonsr + 5 (1
Yont+2 < — = 1.

A

+ _ 2n
2nt+1 xgn-‘—l

So as n goes to 0o, lim,,_, ¥, < 1. We conclude that lim y, = 1.
The same procedure works if holds. e
Case 2 Suppose now neither nor holds. Now from Lemma
we get that
yp, <1, or y,>1, n>-1. (3.18)
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Without loss of generality assume that
Yo <1, n>—1. (3.19)

Claim
Yns1 > Yn, =1 (3.20)

To prove this claim assume the contrary, in other words there exists a u > —1
such that

yZH < yp. (3.21)

zh b

Awir + Zyit1 Yyt

Ay, + 2
1 —q
pt T+

Yut+2 =

Now, yqyf‘ > 1, which implies that

w1

i‘p yp

A/H-l + jq_ﬂ 7

_ pt+1 Yot

yu+2 A fffn
p+1 + =7

Tt

=P

X
Ay + (1)

p+1 — 1
zh, )

—=4
Zut1

A/H—l +

Therefore, y,+2 > 1, which contradicts the assumption in (3.19)) so our claim

is true. Now, we are given that ¢ > p in (3.12)), and (3.19) gives that y,, < 1
for n > —1 so y? > y?. From this and (3.20) we get

yro>yb >yl on> -1

So
ygz—f—l > ygm n Z -1
As a result
Ynil > Yn, 1> —1. (3.22)
Now,
A + ii—l 92—1
n U E Yl
Yn+1 = —fpy
An + n—1

z5



3.1 Asymptotic behavior of the positive solutions 48

7P
By adding 27+ and subtracting this expression from the numerator of the
n
right hand side of the last equation we get
A + Ty 1 Yn-1 | Tpo1 Ty
_ s Zn T
Yn+1 — P L
Ap + 27
n
A Ty + Ty 1 Y1 Tpy
_ ot oa Tn_ Yn Zn
Yn+1 — ZP |
A, + =27
A + Ty _y Ty 1 Yn_1 Tn_y
Ynil = n o Tn _ yn z7,
nt + fft—l A + iﬁ—l
n +4d n +4
Tpo1 (Yn-1 1
z% yn
Yny1 =1+ >,
A+ 27
Now,
Tn 1 (Vno1 1
zh yn
|yn+1 - 1| - ZP L
An+ 23
+P
Tn_1 o
—q y
— Tn n—1
s == e ( v _1D
— n
n f%

A, is a positive sequence which implies that

b
Yn—

Now, by (3.20 % < 1 and we are given that y,,; < 1 then

p P

L= popr < 1— 21 then g, > 2oL (3.23)
Yn n
According to (3.19) y,11 < 1, as n — oo we have lim y, < 1, that is
n—oo
lim y, = A < 1. (3.24)

n—oo

And we conclude from (3.23) that

Ye -
Yn+1 (#) = yn+1y,%yni’1 > 1.

n—1
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As n — oo we have
NPT >, (3.25)

Finally, we conclude from ({3.24]) and (3.25) that

A=1so limy,=1.

n—oo

3.2 Periodicity and stability

Here we consider sufficient conditions for the existence and the uniqueness
of 2-periodic and 3-periodic solutions for Eq.(3.1]) and the convergence of the
positive solutions of (3.1]) to the periodic solutions.

Proposition 3.2.1 [16] Consider Eq.(3.1). Then the following statements
are true:

(i) Suppose that A,, is a positive two-periodic sequence such that
Ao =A,, n=0,1,2, ... (3.26)

Suppose also that 0 < p+q <1 and p < q. Then Eq. has a unique two
periodic solution and every positive solution of tends to the unique two
periodic solution.

(it) Suppose that A,, is a positive periodic sequence of period three such that
Apiz=A,, n=0,1,2, ... (3.27)

Suppose also that 0 < p+ q < 1 and p < q and there exist a positive number
¢ and a 0 € (0,1] such that

(B +¢) P4 pe p ¢’e
T <€, m + 5 < 9, Cati-p + Cat2—p < 9, (328)
where
B= maX{Ao,Al,AQ},C = min {Ao,Al,AQ}. (329)

Then Eq. has a unique periodic solution of period three and every positive
solution of tends to the unique three periodic solution.
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Proof. (i) At the beginning, we show that (3.1) has a unique 2-periodic
solution. Let x, be a solution of (3.1)). Now, z, is two periodic if and only if

the initial values x_q, x( satisfy

2P P
r_1=2a :Ao—i‘;ql, I():IQ:Al—i——g. (330)
x T
0 1
Let x_y =z, o = y then from previous equation we get
P p
yq xd

We prove that (3.31]) has a solution (Z,y), £ > 0, ¥ > 0. From the first part
of (3.31])) we have that

p q 1
%:x—Ao this gives %: A
So we get
y=—""" (3.32)
(LE — AQ) q
From this and the second part of (3.31]) we get
2 p
P x% ( z—A é)
z ([L’ — A[)) a Z
za z'T
= —F — 1 — 7 =
(]j — AO)E (ZL‘ — Ao)q
So we have
P P2_(12
x—ql — A — x—qg =0. (3.33)
(z — Ao)s (z — Ag)s
Consider the function
za xp2;q2
fl@)= ——7 A - —p. (3.34)
(x — Ap)d (x — Ap)a

x) = - 17p—x242 — A 3.35
(@) )q<( ) (3.39)
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Then
lim f(z) = oo, zh_}rgo flz) =—A;. (3.36)

z—Ag

So Eq.(3.34)) has a solution z > Ag. Then if

Q3

x
(2~ Ao)s
we find that the solution Z,, of (3.1)) with initial values z_y =z, xp = g is a

periodic solution of period two.

g:

Finally, using proposition |3.1.1] it is clear that z, is the unique periodic
solution of period two and every positive solution of (3.1]) tends to the unique

periodic solution of period two and this is obvious since y, = £* and lim y,, =

n— o0
1 then z,, — Z,.
(ii) x, is a three-periodic solution of (3.1)) if
zh )
To = T 1 :A1+_2, $3:$0:A2+Tl. (337)

We set x_1 = z, 9 = y in (3.37) and we consider the system of nonlinear

difference equations

Y (h(z,y))"
=A A =A — .
x 1+ (h(x,y))‘f Yy 2+ 24 ) (3 38)
where h(x,y)=r1=A¢ + x:;gl:Ao + ’;—Z We consider the function
H : [Al,Al +€] X [AQ,AQ +€] — R,
such that
) B v ()
H(l’,y) - (f(xay)ag(xay))a f(xay) - A1+W7 g(ZL'7y) - A2+T
(3.39)
First we prove that the function H is in [A;, A; + €] x [Aa, Ay + €.
It is obvious that for all (z,y) € [A1, A1 + €] X [A2, A2 + €]
Flz,y) = A v Ay, si i 0 (3.40)
T,Y) = + —— > Ay, since > 0, .
() (h(x,y))?
also we have
h P h P
g(x,y) = As + M > Ay, since M > 0. (3.41)
x x



3.2 Periodicity and stability

52

Moreover, from(3.28)), (3.29) and (3.38)) and since Z > 0 we get for (z,y) €
yq

[AlaAl + 6] X [A27A2 + 6]7

yp
ny)=A+ L
T ) = At Gy
D
= A + Y 7
(40+2)
Ay +€)P
<A+ (4 p) .
Ao + z—q>
(A2 +€)?
<A A7
(B +€)P
<A+
< A1 + €
(h(x,y))P
g(l’,y) - A2 + 24
gy Aot
x4
(40 + gy’
< Ay + :
(B+@r)
< Ay + —
(B +e€)P
< A2 Ca
< A2 + €

So we have that
flz,y) < A +e

g(x,y) < As + €.

(3.42)
(3.43)

Which implies that the function H is in [A;, A; + €] X [Ag, As + €] as needed.
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Now, we need to show that the function H is contraction in [A;, A; + €] X
[AQ, A2 —|— 6].

f _ (h.)" x 0 — gy (h(z,y))" 250
o (h(z,y))
_ —yq(h(z,y))? " pytaP—?
(h(z,y))% Y24
— —Dpq
ya—rzi=r(h(z,y))ett

of _ (h(z, ) py"~ — qy? (h(w, )= 2lead
9% (h(w, )%
)+ g
- h(a, 9))
_ pypflh(ﬂf, y)q + q2xpypfq71(h(x7 y))qil
(h(z,y))%
p + q2xp
ylip(h(wa y))q yq7p+1(h(gj’ y))q+1 :

dg  pr(h(w,y))r~ D — gt~ (A(w, y))"

or x4
 pa(h(a,y) )P P — qat (Rl )
_ -
_ Pyt g(h(,y))P
o yql'q_p"rl xratl )

g pr(h(z,y)PtEG — 0

oy 2
~ —pgaP Ty (h(z, )P
x2qy2q
_ —pq
za- Pyt (h(z,y)) P

We will use

Pq Pq qe . qe
a1 7) < a1 D) + rel < 6, since rel > 0.
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Now,

—Dpq
yrrat=p(h(z, y))t!
< pq
Ca—r(Cl-p(Catl
o pq
o ('2q4—2p+2
pq

= C2la—p) 0

of| _
oxr|

p N q*aP
ylr(h(x,y))?  yr P (h(z,y))rt

R ¢* (A1 + )

Cl-rCa = (Ca—r+1(qt1

B+-¢)P

< p I qz%

Cla—p+1 Cla—p+2
P,

Cla—p+1 Cla—p+2

of | _
dy|

< 0.

9%
ox

p*(h(z,y)P" q(h(z,y))?
yql'Q*PJrl quJrl
(Art+or\?
q <Ao | ) 2
Catl CQq—p—&—lA(l)*p
(B+eP\?
q (B + = ) . P
Cla+1 O2(g—p+1)
q(B +e€)? p?
Catl C2(g—p+1)
€q P’

< C * C2(g—p+1)

<

<

< 0.

—pq
wP=aydtl(h(z,y)) P
pq
C2q—p+1 A(l)*P
pq
< C2a—pt)

99| _
dy|

< 0.
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So we conclude that

of
ox

of
a—y\ <

dg

ox

dg

= . 44
<0, <0, 9 <0 (3.44)

Moreover, there exist & € [A1, A1 + €|, n; € [As, Ay + €], i = 1, 2 such that
for all z1, x5 € [A1, A1 + €] and yy, Yo € [As, A2 + €.

Flarsn) = fon i) = LEED G )
flar )~ P = LB g, o)
g(z1, ) — g(z1,92) = %;’m)(yl —42), (3.45)
9(x1,2) — 9(x2,92) = %(m — T3).

|f(z1,01) = floo,92)| = [ f(x1,01) — f(o1,92) + f(21,92) — 2, 92)]
< |f(xr, 1) — flon, )| + 1 f (21, 92) — 22, 92)]
< 20 max{|x, — x2|, |[y1 — 2}

And

l9(w1,y1) — g(22,2)| = |g(21, 1) — 9(1,92) + (1, 92) — 9(T2,92)]
<|lg(z1,91) — g(x1, y2)| + |9(z1,92) — g(22, y2)|
< 20 max{[z1 — @2, [y1 — v}

Thus

} < 20 max{|z1—xa|, |[y1—y2|}
(3.46)

max{|f(z1, 1)~ f(22,92)], |9(x1, y1)—g(z2, yo)

Definition 3.2.1 Let (X,d) be a complete metric space. A function
f X — X s called contraction if there exists k < 1 such that for any x,
yeX

d(f(x), f(y)) < kd(z,y).



3.2 Periodicity and stability 56

Now, from({3.46)) and since 6 € (0, 3) the function H is contraction in [A;, A;+
6] X [AQ, A2 + 6].

Theorem 3.2.1 Banach Contraction Principle
If f: X — X is a mapping on a complete metric space (X, d) into itself, and

there exists a number a < 1 such that for any two points x, y € X

d(f(x), f(y)) < ad(z,y).

Then, f has a unique fized point, and for any x in X the sequence f"(x)

converges to some point.

Hence, according to Banach Contraction Principle there exist a unique
(Z,7) € [A1, A1 + €] x [As, Ay + €] such that

= f(z,9), y=979).
Therefore the solution z,, with initial values x_y = z, ¢ = ¥ is periodic
solution of period three. Using proposition (3.1.1)) it is obvious that x,, is the
unique solution of period three and every positive solution of (3.1]) tends to
the unique 3-periodic solution of (3.1]) as n — oo. [ |

Proposition 3.2.2 [16] Consider Eq.(3.1)and assume that 0 < p +q < 1,
p < q. Then the following statements are true:
(i) Suppose that

Apio=A,, n=0,1,2,....

Suppose also that

p P+ p
ATAGT? (AAg)etior  ATATP

<1 (3.47)

Then the unique 2-periodic solution of 1s globally asymptotically stable.
(ii) Assume that
An+3 == An, n = O, 1, 2,

And

(B +¢)f Pq pe p ¢
<€ =y + = <0, Carip + Carip < 0,
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where
B = max {Ao, A17 AQ}, C' = min {Ao, Al, AQ}

Suppose also that
3pq P’ +¢
C2(p+e-1) ~ (3(p+q-1)

Then the unique 3-periodic solution of 15 globally asymptotically stable.

<1 (3.48)

Proof. (i) From proposition(3.2.1)) there exists a unique periodic solution
Z, of period two.
Let
Ton1=2T, Top =19, n=0,1,2,....
We have »
Ty _

Tpt1 = An + q
n

1

Since the solution is two periodic we have that

T =T =Tz = ... = Tap+1, n:—1,0,1,2,...,
and
Tog==Tg =Tg=..=Toy, n=0,1,2,....
Consequently,
p p
x T
2n—1 2n
Toptr1 = Ao + —q Lon+2 = Al + q (349)
Lon Ton+1
Then Y .
z )
Topt1 = Ao+ =, Topyo = A1 + =.
yq x4
Now, if we set x9,_1 = 2,, T2, = w, in the previous equations we get
2P wP
n n
Zn+l1 = A() + > Wp+1 = Al + 7 . (350)
Wn Zn—f—l

Then (z,y) is the positive solution of (3.50)).

The system
b7 wP
n n
Zn—i—l - AO + q> wn—i—l - Al + q
Wn Zn—‘rl
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can be written as

Zn wy,
Zn+1:A0+w_ wn+1:A1+—

q° PR
n <AO—|—;—:§L>

which can be linearized as

Upny1 = Bl/na

where
0zZn+1 0zZn+1 e
B = Ozn, Own, — n
Owntr  Owpyy |7 7T w
Ozn Own, n
wapz, |0 0—z8qui !
wd w24
P a1 q .p—1 p\9 " p\171 Powd—1
B = Ofwgq(Ao+%) (%Qq—o) (AH%) pwﬁ_lfwﬁq(A0+z—’}I) (o_znq;;n )
Wn, wy, Wy, wi w2
P 24 2P 2q
Ao+ % Ao+
n n
p —az
z,,llipw% w%‘f’l ,
- —pq D q
PG - N7 T - G
(Ao+w—l}) wi Pz P wn (AoJrﬁ) wq+17pznp(Ao+w%)
n n
When this system is evaluated at (Z,y) we get
L =gz
zl-rga gatl
B B AP +1 L zP \ 4 + q2 1
garzl—r(Ao+ig )" g P (Ao+27) glrrazr(Ag+ 27 )"
. . . . — xp _ TP
The solution is two periodic, so T = 9,1 = Topy1 = Ao + j:% L— Ay + o
n
Then
p —qzP
rl—pyd 7q+1
B = =y ] )

—Pq p + q
zat2-prya—p  gayl-p (zy)ati-r

To get the characteristic equation of B we solve |B — AI| = 0.

_ %P
g A it 0
— 2 —_— .
j-‘H‘Q—];%q—P qupl—p + (jg)g+l—p —A
We get
Pyt ¢’ _A)_(—qri‘p P
Tl-pya zul-r  (zg)eti-e gatl N pat2-pga-p’
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Then

p? pq pA pA ) 5 pq

Ta—pHlga—p+l + T2 22q—ptl N Tl-rya N Tayl-r N (fgj)lﬂrl*p AT T2 +22q—p+tl

The characteristic equation of B is the following

p p ¢ p?

j;lfpgq qulfp + (j«g)qﬂﬂ) - (g—;g)qﬂfp

A= \(

= 0. (3.51)

Since the solution is two periodic then z, y satisfy (3.31) and we have that
T > Ag, y > A; and so (3.47) implies

2

p P, 4
rl-rye  payl-p (fg)qﬂ—p
p p P+q?
rlopge - gagl-r - (Ty)etioe
p p P+ ¢

< — + — + < 1.
AJAT? AGATT (AAg)ettor

So all the roots of are of modulus less than 1. Hence, using Theorem
1.3.1] (z, ) is locally asymptotically stable, and referring to proposition m
the solution is globally asymptotically stable.

(ii) We conclude from proposition that there exists a unique 3-periodic

solution z,, of (3.1)).

Let
P 7P
x T
— — 3n—1 —
T3n1 =T, T3p =¥, T3ny1 = Ao+ —5 :A0+Tq:Z, n=01,..
L3, Y
From (3.1) we get
D D D
x T x
_ 3n—1 o 3n _ 3n+1 o
Tany1 = Ao+ —5—, Tanpe = A1+ 7, Tanz = Ao+ 0, n=0,1,...
L3n L3n41 L3n42

(3.52)

If we set x3, 9 = Uy, T3,_1 = UV, T3, = W, in (3.52)) we get

P
Un

wh ub
R Vpny1 = Al—l—q—n, Wpt1 = A2+ Z+1, n = 071,.... (353)

Unt1 = Ao+ —7
Wn Up i1 Vny1

= 0.
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Then (z,Z,y) is the positive equilibrium point of (3.53). The preceding

system can be written as

Vp p
P p Ao+ %
I/n wn Wn,
Upp1 = Aot—7, Vng1 = A1+—p 7> Wnt1 = Aot 7>
0 wi wh
A+ RN
(%)
which can be linearized as
Znt1 = 12y,
where
Ount1  Ouny1  Ounyi
Oun Ovn, Own 0 oS Un
_ | Ovnt1  Ovmg1 Ovnga _ _
T = aaun 681/” 68wn - 0 T2 S22, #n = Vn
Wn+1 Wn+1 Wn A1
Oun vy, Own 0 r3 83 Wn
Now,
D
0 (Ao + %)
B S A—
Oy,
oA+
0ot ul) _wip ' -0 p
’]"1 = = = .
2 —
ovy, wp! Un Pwi
vh
. 9 <A0 + w%> 00— vPqui=! _—quh
1= = 3 = T
awn 'wnq ng
W,
a Al + PN\
)
- =0.
ou,
a Al + wnp q
)
o =
ov,,
» 2\ (it 20
0—whq ( Ao+ JF w3
— —
(#0+ %)
q, p—1
__apP Yn PWnln
ol 5)" ()
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2
. p
rs = q
1-p
P P q
vi=Pwy | Ay + " <A +%n>
(ar+2%)
Wn,
2
Pq
- q+1
+1-p
1— _ P p\ 9
vn Pwd Pl Ay + g (Ag—l-%)
) "
(Aoer’é )
0| Ay + 7
p
P
(104 2%)
S3 = =
ow,,
q
D y pfl 0— P q—1
Ayt b | p A+ )" (gt
(20 ' ’
S3 = 27
p
Al + w";p q
(A0+ 7&)
q—1
i 5 n -1 h 0—vhqui™
(A0+Z,—q> q | Ar+ 77— {(Aoerq) pwy, pr<Ao+ﬁ> ( i
n A +"7’n n n
)
_ 5
2q
P P
Al + w»,:p q (AO + ;%)
(Aoer’& ) "
—Pqvy, B qap
S3 = q q+1
1 _
q+1 Wn, Vﬁ 14 P P
wn | AL+ N (Ao + w—%) wn P | A+ e <Ao + Z)—Z)
(a0t %) o) !
n wy,
3
B vy
q+1
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Now, u, = x3,_2 = T3,11 = Z since the solution z,, is three periodic, v, =
= T, w, = 3, = §. Ttisk hat Ag+ % = = = =
T3n-1 = T, Wp = T3p = Y. 1L1s kKnown that Ao+ % = Uni1 = T3n41 = T3n2 =
_ P _
Z, also we have that A; + % = Upi1 = T3pgo = T3p_1 = Vp = T.
=)
Wn,
Consequently,
= p
1 i_lipgq 9
qa”
S]. - _gq+1 I
To = _L
2 pl-pya—pzetl’
2_
p gz’
S92 = ——— - —
yl—pzq yq—l-l—pzq—l-l
2 2
e — p pq
3 Tatl-pgazl-r  p2Ha-pa-pzetl-p ’
3
s . pq _ pq _
3 pepyetizl-p  gpltayl-prza—p (jgg)qﬂ—p ’
Now, [T — M| =0
-\ T S1
|T — )\I| =10 ro — A S9
0 T3 S3 — A
qz?
—A T —gert
= —___pa P q*zP
gl-prga—rza+1 yl—pza yatl-pza+l
+ 2 _ pg _ pg _ ¢ Y
ZaFtI-pgazi-p F2Ta-pya-pzati-—p za—pgatizl-p zltagl-pza—p (zyz)ati-r
_ pg _ P4 q*zP
_ _)\ zl-rye—rzatl gl—pPza gati-pza+l _ 0
P + pq? _ Pq _ pq _ ’ Y ’
qurlfpgqglfp f2+q7pgq7p5q+lfp jq*pqurlzlfp lerqglfpgqu (ng)Q+1*P
which is
3
Y Y L o pq . Pq o q 1\
jl—pgq—pgqﬂ jq—pgqﬂgl—p jl+qg1—p§q—p (jgg)qﬂ—p
25 2 2
_ p q-z? p Pq 0
gl—pgq gq+1—p§q+1 jq—pnggl—p j2+q—pgq—p§q+l—p
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Then

(pg)? (pg)? pg*

749—2p+1 g2q—p+1 >q—p+2 74—p+2 gq—2p+1 72q—p+1 jq—2p+2g2q—2p+1 72q—p+2
Apg Apg g Ag?

jl—pgq—pgqﬂ g—;q—pgzﬁ-lgl—p quyl—pgq—p (j;gg)qﬂ—p

P’ (pg)* (pq)* pq* ) o,

+ )2

(j;g g)q—p+1 TI-PH2ya—2p+1729—p+l TI72H1g2a-ptlza—p+2  pq—2p+22q—2p+1 729—p+2

which implies that

A A A A 3
A<>\2+ pa_ pg_ pa_ A p ) o

jl—pgq—pgqﬂ jq—pgqﬂ zl-p jq+1g1—pgq—p (jgg)q—pﬂ (jgg)q—pﬂ

Then the characteristic equation of the matrix T is

3 3

2 bq bq pbq q B b .

A (A tA (q—;q—pgqﬂzl—p ™ jl—pgq—pgqﬂ T j;1+qg1—p§q—p ™ (jgz)qﬂ—p (jgg)qﬂ—p) =0.
(3.54)
Now,
3
pq i pq pq
;z-qugqﬂ zl-p j;lfpgqugqﬂ j-Hqglfpgqu (jyz)qﬂﬂ)
pq N pq N pq N ¢ _
ALPATTIAT?  ATPATPALT - ATIATPAT?  (AgALAy)rti-r
pq N pq N pq N P+
AFTPATH AL AGTPATTPAST  AGTTATTPALTP (AgAgAg)atior
< Pd P 4 < 1.

C2(q+p-1) ~ (3(g+p-1)

So all the roots of are of modulus less than 1. Hence, according to
T heoremthe unique 3-periodic solution of is locally asymptotically
stable.

Finally, from proposition the unique 3-periodic solution is globally
asymptotically stable. [ ]



Chapter 4

On the Difference Equation

x
Tp4l = Pn T+ Wil

In this part we will study properties such as boundedness and persistence

and attractivity of the equation

Tt =Pk =0,1,.... (4.1)
xXr

n—1

Where z_1 > 0, g > 0, and p,, is a positive bounded sequence with

liminfp, =p >0 and limsupp, = ¢ < c©. (4.2)

n— n—00

4.1 Boundedness and persistence

Lemma 4.1.1 Assume Eq. 18 satisfied. Let x, be a solution of
(i) If p > 0, then {x,} persists.
(ii) If p > 1, then {x,} is bounded from above.

Proof. (i) Assume that p > 0, it is clear that x, > 0 for all n = 1,2, ..., so

Tn
Tn—1

> (0, which concludes

Tn

Tp4l = Pn + > Dn-

n—1
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So we get

liminf x,, > liminf p,, = p.
n—oo n—oo

Then

liminf z, > p.
n—oo

Thus {z,} persists.
(ii)Assume that p > 1, from (i) we know that x,_; > p,—o > p—€ > 1 for
sufficiently large n and € > 0. Use Eq.(4.1)) to get

‘/'En
Tpt1 = Pn + < pn+ .
Tn-1 p—e¢
Referring to Theorem ([2.0.4)), {z,} is bounded since p,, is bounded. [

Lemma 4.1.2 Assume that Eq. 18 satisfied and p > 1, and let x,, be a
solution of Eq.. If

A =liminf z, and p = limsup z,,

n—00 n—00
then ) .
pq — pq —
<2< < . 4.3
-1 =M= (43)

Proof. Let € > 0, then there exists Ny(€) such that for n > Ny(e), we have
A—e<z,<pu+eandp—e<p, <q+e Then,

Tn A—e¢€
n+l1 — Pn >p— y 4.4
Tptt p+xn71_p €+M+€ (4.4)
and N
Ty €
Tpil = Pn + gq—i—e—l—M—. (4.5)
Tn—1 A—€
As n — oo we have )
—€
A>p—e+ , 4.6
>p . (4.6)
and N
€
MSQ+6+§_. (4.7)
e > 0 is arbitrary, so
A

)\2]9"‘_7
1
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and
1
< —.
WS q+ h
Hence,
Ap = pp > A,
and
A =g\ < .
Hence,

pp + A < Ap < gh+ p.

As a result, we get

pp — < gA — A,

and so
plp—1) < Mg —1),
so we get
—1 A —1
Bl g 2222
AT p—1 w—qg—1
For n > Ny Eq. Using (4.4) and Eq.(4.5) and Taylor’s expansion we get
S . A—¢€
Tpp1 > p—€
+1 2P it e
A
=p+—+0(e)
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and

+ €
In+1§¢1+€+l/<

=g+ 5+0(0)

—1
<gard—-
_q—i—p_l—i-O(e)

pg—q+q—1

= P + O(e)
_pg—1
= o1 + O(e).

Now, € > 0 is arbitrary, then,

-1
$n+12pq )
qg—1
and .
$n+1§pq_ :
p—1
As n — 0o, we have
A>pq_{
=
and )
L P
p—1
So we get
Pi=l oy cp<Pi”]
q—1 p—1

Theorem 4.1.1 Consider the interval I = [PQQ__II, PPQ__II], where

1< P<p,<Q, forn=0,1,2,... If x, is a solution of Eq. such that
x_1,x9 €I, then x,, € I for alln=20,1,2,...

Proof.

Zo

Ty =po+—.

T_1
Now, x_1, 290 € [ = [PQQ__Il, PPQ__ll], so we get

PQ-1
T —1
=,

,I‘_l_%_P—l7
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and PO_1
Zo S Q-1 _P—l
= PQ-1 -1
T—1 1 Q
Then,
PQ-1
Zo P—1 Q-1 PQR-Q+Q-1 PQ-1
— —< —_— — —
o p°+x_1—Q+PQQ_—11 P P—1 P-1"
and
PQ-1

- o P-1 PQ-P+P-1 PQ-1
T=pot —= > P4 o =P+ — - .
SRR PQ-1 0-1 0-1 0-1

So x1 € I. Assume that the result holds for k = 2,3, ..., n.
For k=n+1

PQ-1
z, - Q-1 PQ-Q+Q-1 PQ-1
— < P = = =
Tn+1 p"+xn,1 —Q+PQQ_—11 Q+P—1 P—-1 P—-1"
and
PQ-1
Tnt1 p+:1:n,1 +PPQ_—11 +Q_1 Q-1 Q-1

So x,+1 € I. We conclude that x, € I, for all n =0,1, .... [

4.2 Attractivity

Assume that Z is a positive solution of (4.1)). Here we are interested in
finding sufficient conditions such that = attracts all the positive solutions of

the equation, in other words we mean
T, — T.

Now, let
Tp
Yp = —, n=—1,0,1,....

This gives

Ty, = Tpln.
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Returning to Eq.(4.1)), plug in the new value of z,,

TnlYn

Tn+1Yn+1 = Pn + = .
Tn—1Yn-1

TnlYn
Tn—1Yn—1

jn—i—l

TnlYn

p’I’L + jnf}ynfl
Pnt 30

Tn—1

Then iy
Pn + 5
Ynt+1 = p—l-—,l’fjl (4.8)

Tn—1

Lemma 4.2.1 Let x,, be a positive solution of Eq.. Then the following

are true
(i) Eq.({4-8) has a positive equilibrium solution § = 1.

(i) If for some n, yn—1 < Yn, then y,41 > 1. Similarly, if for some n,
Yn—1 = Yn, then yni1 < 1.

Proof. (i) i
Pt 2y

j=—>2Y — 1
S :
Then Eq.(4.8) has a positive equilibrium solution that is 1.

(ii)Assume that for some n, y,_1 < y,, then ﬁ > 1.

Tn | _Yn
y _ pn + Tn—1 (yn71>
" Pn+ ffil

. P+ z2-(1)
Pn+ 7%
p?’l+ fxnl
= ——7 =1
Pn + =2

Tn—1
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S0 Ypi1 > 1.
Similarly, assume ¥,,_1 > y,, then % < 1. Now,

Pn + ffil (yz:)
yn+1 = pn—‘f_ Tn

Tn—1
pn‘+'£ni1
_ Pn + E:T—Ll —1

= T

Pnt 3z

So Yn+1 S 1.
Theorem 4.2.1 Let y, be a solution of Eq.

a) Assume that there exists n such that y,—1 < 1 and y, > 1 and yp4o <

Yn+3 < Ynta < .-
(i) If Yn > Yni1, then ypip > 1 for all k = 4,5, ...
(1) If Yn < Yn+1 and Ynio > Yni1, then ypip > 1 for all k = 1,2,
b) Assume that there exists n such that y,—1 > 1 and y, < 1 and yp4o <

Yn+3 < Ynta < ...
(1) If Yp > Yns1 and Ypio > Yna1, then ypop > 1 for all k = 3,4, ...

(1) If Yn < Yni1, then ypop > 1 for all k =2,3, ...
Proof. a) Assume that y, 1 < 1 and y,, > 1, then yi’—: > 1, which concludes

that

. Pn + i‘iil (yg:)
I T

Tn—1

P+ z2=(1)

Pnt 3z
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Thus, y,41 > 1.
I ) I n n+ v
(i) Now, since y, > yn41 and “5 < 1 and we have

n

Yn+2 = -
Pn+1 + z +1

pn+1 + TLH (1)
Pnt1t ;

n+1

pn+1 +
pn+1 + n+1

Tnt+1 [ Ynt1
pn+1 + T < Yn )

Hence y, 12 < 1, it’s clear that y,12 < y,41, then z"—ﬁ < 1, thus

Znt2 [ Ynt2
y Pnt2 + 5 <—yn+1>
n+3 — Tnto
Pn+2 + Tt
fin+2
Puss+ f.<1>

xn+1

Pn+2 + T +1

Tn42
_ P2t _ 1
jn«l»? - .
Tnt1

<

B DPnt2 +

Thus Y43 < 1.
Assume that y,10 < Ynis < Ynia < ...
For k=4

$n+3 Yn+3
y Pnts+ 57, <—yn+2>
n+d = xn+3
Dn+3 + Tni2

DPn+3 + M(1)

Tn+42
n+3
DPn+3 + Tni2

Tn43
. pn+3 + in+2 . 1
in+3 - :
En+2

>

B DPn+3 +
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Thus Y44 > 1.

Prya + 2ot (yi)

Tn+3 Yn+3

Yn+5 = Tn
Intd
pTL+4 + £n+3

Tn+3

Tntd
Pn+4 + 7n_(1)
> xn+4
Tn+3
xn+4

Pn+4 + ===
Dn+4 +

Pn+a +

Tn+3 1

jn+4
Tn43

Then y,.5 > 1.

Prs + Zntd (M)

Tn+t4a Ynt4

Yn+6 = "
Tnts
Pn+s + Tnta

Tn+44

>

x
Pn+s + —nt

Tn44
Tn+b

o Pn+s5 + ==

Tn+4 1

jn+5
277n+4

Pn+5 +

Thus yn46 > 1.

It is obvious that for £ = 4,5,6, ... we have y,.x > 1 since Yp1x-1 > Ynik—2,

then % > 1. As a result,

nt+k—2 Yn+k—2

Prtk—1+ = Tnthol (—y”““*l) Prth—1+ = Intk-L (1)

Ynvk = Tntk—1
Prn+k—1 + +

i’n+k72

(ii) Now, since v, < Yni1, y;“ > 1, thus we have

T+l [ Yntl
Pot1 + 75 ( Yn )

n

Pntk—1 +

Yn+2 = =
pn+1 + n+l

_ Pt x”“ (1)

-7377.+1
Pn+1 +
+1
_ Prn + ;
'I'L

Do .
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Thus 9,40 > 1.
Let k = 3. It is assumed that y,12 > ¥y,11, SO z"i > 1, thus

Tnit2 [ Ynit2
y P2+ 57 <yn+1)
n+3 — Ttz
DPn+y2 + Trit

Dn+2 + Lo (1)
>

Tnt1

'n+2
Pn+2 + Tnil

xn+2

pn+2 +

xn+l . 1
In+2 - .
Tn+1

pn+2 +

Thus y,+3 > 1.
It is assumed that 4,2 < y,13, then z’”—iz > 1, which implies that

n+3 Yn+3
y Pn+3 + Tnio (yn+2>
n+4 — ZTnts
Pn+3 + Tnto
xn+3
Dn+3 + Z +2 (1)

Pn+3 +

xn+2

Tn+3
p’I’L-‘rS + z n+2 e ]_
$n+3 :
xn+2

pn+3 +
So Yn+4 > 1.
In general for k£ = 1,2,3, ... it is true that y, x > 1 since ypik-1 > Ynik2

and y"*’“ L L> 1 As a result,

n

Pkt + Znthl (—y"”*l) Prgk1 + L (1)

y Tpntk—2 Yn+k—2 Tpyk—2 o 1
ntk — Tntk—1 Tntk—1 o
Pn+k—1 + Trtr_2 Pn+k—1 + Trth_2

b) Assume that y,_1 > 1 and y,, < 1, then yg’_Ll < 1, thus we have

Pn + i“fr—Ll <%>
Yn+1 = D+

xnl

pn+ 52-.(1)
p’n7+ fiil
_ Dn + 5”:;‘;1 .

Pn+1 + jny_Ll

<
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Thus Y41 < 1.
i) Since Y, > Yni1, y;zl < 1, then

Dn+1 =+ xnzl (%)
Pny1+ 75—
Pn+1 + mgzl (1)

< n

Yn+2 =

Then y,.o < 1. Now, for k£ = 3, it is given that y,,o > y,+1 which gives

Yn+2
> 1, consequently

Tnit2 [ Ynit2
P2+ 5 <yn+1)
in+2
Pn+2 + Tp+41

zn+1

Yn+3 =

>

Pn+2 + Tni1

xn+2
pn+2 + mn«l»l
xn+2
in+1

=1.
pn+2 +

S0 Yp+3 > 1. It is assumed that y,12 < y,.3, then y”—” > 1, which implies

that
Tn+3 [ Yn+3
Pn+3 + Tniz <yn+2)
xn+3

Pn+3 + Tni2
Dn+3 + M(1)

xn+2

Yn+a =

>

Pn+3 + z +2

pn+3 + Tngz 1
$n+3 o
pn+3 + Tnto

So yn+4:> 1.
Generally, for £ = 3,4,... we have y,.x > 1 since y,1k-1 > Ynikr_o and

Inth=l ~ 1. As a result,
Yn+k—2

Pkt + Tnik—1 (M) Prtk1 + xniz ; (1) B

Tntk—2 Yn+k—2

n+k 1

n+k 1
Pn+k—1 + k2 Prn+k— 1+ k2

Yn+k =
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(ii)For k = 2, y,, < Yn+1, consequently y;—:l > 1 and

In-‘rl Yn+1
Pn+1 + <—yn )

Tn

Yn+2 = n
Pn+1 + z +1

Pt z"“ =.(1)

T
pn+1 + 'IL+1

xn+1

pn+1 + B
pn+1 + InJrl

Thus y,42 > 1, since y,12 > y,+1 We have

$n+2 Yn+42
y pn+2+ Tl (yn+1>
'VZ+3 - £n+2
pn+2 + En«kl

P2 + M<1)
>

Tn+1

Pn+2 +

$n+2

$n+1
Tnt2

_ P2t 1

o Tnt2

3_371,4»1

Pn+2 +

For k =4, y,+3 > Yni2, then y”” > 1, which gives

Tn+3 [ Ynt3
Pnts + 3, <—yn+2>
Ynt4 = %
+3
pn+3 + £:+2

DPn+3 + M(l)

xn+2

DPnis + =

>

T n+2

n+3
_Prs T, _ 1
Tnts
£n+2

B Pn+3 +

Hence, y,41 > 1 for all k = 2,3, ... since ¥nirx—1 > Ynik_2 and % > 1. As

a result,
n+k 1 Yntk—1 n+k 1
Prtk-11 3 ntk—2 <yn+k72) Pntk-1 71 3 ntk—2 (1) —1
yn+k - p + n+k71 p + n+k 1 o ’
n+k—1 Trtr_2 n+k—1 k2
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Theorem 4.2.2 Let y, be a solution of Eq.
a)Assume that there exists n such that y,—1 < 1, y, > 1 and yYp12 > Ypis >

Yn4+da > -.n.
(1) If Yo > Yns1, then yop < 1 for all k =2,3,....

(1) If Y < Yns1 and Ynso < Yni1, then yoop < 1 for all k = 3,4, ....
b) Assume that there exists n such that y,—1 > 1, y, < 1 and Ynio > Ynis >

Yn4+4a > ...
(1) If Yo < Yns1, then yop <1 for all k =4,5,....

(1) If Yn > Yni1 and Ynio < Yni1, then yoop < 1 for all k =1,2,....

Proof. a) Assume that there exists n such that y, ;1 < 1, y, > 1 and

Yn+2 > Yn+3 = Ynta > -
It is clear that y” > 1, then

In Yn
pn.+_fn 1 <§;_T>
Pn + In ;
P + 22 (1)

Pnt 50

Tn—1
Pn + Tt _q
pn+1 +

Yn+1 =

Tn

-Tnl

So Ypi1 > 1.
(i)For k =2

Tntl [ Yntl
- <—)
Yn
yn+2 = T .
pn+1 + n+1

Since ¥, > yn.1 we have % < 1, then

Prn+1 + nﬂ (1)

y7‘L+2 < Tnit1
Pn+1 + +
$n+1

Pn+1 +
pn-i—l +

J7n-‘,—1



4.2 Attractivity

Thus y,40 < 1.
For k = 3, Y12 < Yny1, then z:ﬁ < 1 and as a result

In+2 Yn+2
Pn+2 + Tnil <yn+1)
Yn+3 = Tn
+2
pTL+2 + £n+1

Pn+2 + M(1)
<

Tn+1

xn+2
pn+2 + Tn+41

In+2

DPn+2 +

jn+2
in+1

S0 Ypiz < 1.
Since Y12 > Ynaz and z"—iz < 1 we have

In+3 Yn+3
Pnts + 3,0, yn+2>

Yn+4 = T
pn+3 + fn+3

<

S0 Ypia < 1.
Since Ypir_1 < Ynik—2 We get y,op < 1 for all £ =2,3,....
In other words, Z"i% < 1. As a result,

Tntk—1 [ Yntk—1 Tntk—1
DPntk—1 T Trnih_2 <yn+k72> Pntk—1 + (1)

ntk—2
yn+k - in+k—1 n+k 1 = 1
Prtk—1 7+ Tptk—2 Prtk—1 7+ Tpik—2

(ii) Ynt1 > Yn, then yz—:l > 1 and so

Tn+t1 Yn+1
Pust + 222 (—y;)

Yn+2 =
n+l
DPn+1 +

_ pu B0
DPn+1 + acn+1

mn+1

pn+1 +

T
pn+1 + n+1
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S0 Ypio > 1.
For k = 3, Y12 < Yny1, then z:ﬁ < 1 and as a result

Tny2 [ Yni2
DPn+2 + Tnil <yn+1>

Ynt+3 = Zn
T2
DPn+2 + Tnit

DPn+2 + Znt? (1)
<

Tn41
xn+2
-’En+1

Pn+2 +

Tp42

_ Pny2 +i _
pn+2 +

xn+2
xn+1

S0 Ypi3 < 1. Since Y,i0 > Ynr3 We have

In+3 Yn+3
y pn+3 + Tn+2 <yn+2>
n+4 — ZTnts
Pn+3 + 3 2

Pn+3 + ot (1)
<

Tnt2

In+3
pn+3 + Tn42

xn+3
Tni2 _ 1
in+3 :

Pnt3 +
Pnts + 3,0,

So Yn+4 < 1.
Hence y,.x < 1 for all k£ = 3,4, ... since Y111 < Ynik_2-
In other words, z’ﬁ% < 1. As a result,

pn+k 1 + $n+k 1 <yn+k71> pn+k 1+ ’ﬂ+k 1 (1)

T n+k—2 Yn+k—2 x n+k—2
yn+k - p + n+k 1 p + n+k 1 = 1
n+k—1 Trth_2 n+k—1 Trih_2

b) Assume that there exists n such that y,_1 > 1, y, < 1, then yy’il < 1 and

Pn + i“fr—Ll <yin1>

Yn+1 = oo+ T
P + m}-(l)
Pnt 55
Pnt 32
N Pnt1 + =L

Tn—1
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(i) Yn < Yn+1 and consequently % > 1, then

Tnt1 Yn+41
Papt + L (—y:)

$n+1

Yn+2 =
" pn+1 +

pn+1 + n+1 (1)
Pn+1 + ;

n+l

pn+1 +
pn+1 + anrl

Then y,.o > 1. It is clear that y,,+1 < y,12, therefore

Tnt2 [ Ynt2
Pnt2+ 5 (_yn+1>
xn+2
DPn+2 + Trit

n+2

S DPn+2 + Tnt1 (1)

Yn+3 =

n+2
Pn+42 + Tnil

xn+2
pn+2 + Tni1 1
In+2 - .

Tn+1

pn+2 +

For k = 4, using the assumption that says y,.2 > y,13 we get Z”—Iz < 1, then

Tni3 [ Ynit3
Pnts + 57, <yn+2>
xn+3
pn+3 + xn+2

Dn+3 + Lo (1)
<

Yn+4 =

xn+2

Pr+3 + z +2

$n+3

pn+3 + Tnt2 — 1
pn+3 +

xn+3
Tni2

Then, y,14 < 1.
Hence, y,.r < 1 for k =4,5,6,... as a result of Y111 < Ynir_2-

In other words, z"““ L < 1. As a result,

Tpik—2 Yn+k—2

Ln Yntk— n
proc 22 (020) st R )

n+k 1

n+k1
Prn+k— 1+5L“+k2 DPn+k— 1+33+k2

Yn+k =
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(ii)For k = 2, we are given that y,, > y,+1 which gives that % < 1, then

Tn+1 Yn+1
Py 72 (1)

Pn+1 + ;Jrl
pn+1 + 7} ( )
Pn+1 + +1
mn+1

pn+1 +
pn+1 +

Yn+2 =

xn+1

S0 Yo < 1. As a result of the assumption we have i"—*f < 1, hence

n+

Pryg + Znt2 (y’L—”)

Tn+1 Yn+1
yn+3 - i
Int2
pn+2 + fn-kl

Pnt2 T M(l)

Tn+1

< $n+2
mn+1

Pn+2 +

Tn42
_ P2t 1
fn+2 - :
jn«kl

B Pn+2 +

Hence, y,.3 < 1. Now, for k = 4 we have

Prys + ot2 <y”—+3>

Tn42 Yn+2
Ynta = T
n+3
P43 + Tnt2
Tnt3
O A (1)
<

xn+3
pn+3 _I_ $n+2

Tnt3

Pn+3 +

Tni3
£n+2

Thus yn44 < 1.
Hence, y,.1x < 1 for k =1,2,... since Ypir-1 < Yntk_o2-

In other words, z"““ L < 1. AS a result,

n+k 1 Yn+k—1 n+k 1
p’l’L-‘rk 1 + xn-&-k 2 (yn+k 2) pn+k 1 + (1)

y +k- zn+k 2 . 1
nrk T Tpyk—1 Tpyk—1
pn+k 1 + Tpik—2 pn+k 1 + Tpyk—2
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Theorem 4.2.3 Let {y,} be a solution of Eq.. If there exists n such
that y, > Y1 > 1 and y”—*’“ > 1 fork =4l — 1, where l = 1,2,3, ..., and
yyizkl <1 fork =4l+1, wherel =0,1,2,..., then {y,} is an oscillatory solu-

tion in which {Yn1a1, Ynrar1} wherel =1, 2, 3, ... gives the positive semicycles

and {Ynsai12, Ynsairs} where l =0,1,2, ... gives the negative semicycles.

Proof. We proceed by induction. We are given that y,, > y,,+1 then % <1,
which implies that

Prgr + 2t (yy—*> _Poni Tl (1)

Ynt2 = ” = = 1.
" Dn+1 + j+1 Pn+1 + +1
Then y,10 < 1.
It is clear that y,.2 < y,.1 which gives zn—ﬁ < 1, then
Tn Yn n
. Pryz + 25 <ynﬁ) _ Pnio + mnij (1)
+3 = =
! DPn+2 + xnﬁ DPn+2 + 9’3:1?
Then y,4+3 < 1. Now,
Tn Yn n
Pt 22 (52) ot B2
Yn+4 = D i Tnis > + Tn+3 — 1.
n+3 T Z5 Dnts ™ 775

Since according to the assumption for k =4 x 1 — 1 = 3 we have z"—ﬁ > 1,

then y,+4 > 1.

ZTnta [ Ynta [y
pn+4 + Tn+3 (yn+3> > pn+4 + T n+3 (1)
+4 xn+4
Pn+a + Tnis Pn+a + Tnis

And that because y,.4 > 1 and y,+3 < 1, then Zz_ﬁ > 1, then y,15 > 1.

ZTnts5 [ Ynts Tnts
y Pnts + 50 <yn+4> <pn+5+x+4 (1)
n+6 — Tn+5 Tn+5 =
pn—‘,—5+z nid pn+5+x id

Since for k =4 x 1+ 1 =5 we have that z”—ii < 1 as in the assumption, then
Ynie < 1. And

Ynt7 = Tnio
n Int6 Tn+6 -
DPn+e + Znts Pn+e + Tnis

Pn+e + zz:g <z:__~+_2> - DPn+6 + Tn+6 (1) B
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Since Yn16 < Ynys We have z:—ﬁ < 1, then y,, 7 < 1.
Ifk:4x2—1:7,then;‘j:—1;>1andweget

Tn47 [ Ynt7 Tny7
Pry7 T Tnte <yn+6> S Pny7 + :En+6 (1)
Ynts = =
n+7
P71+ 505 Pt + 3 xn%

yn+8

Now, y,+s > 1 and y,,+7 < 1, then > 1, as a result

Tnts [ Ynts Tnis
Pr+s + Tpi7 (yn+7> Pnts + zn+7 (1)
yn+9 Tn+8 >
Dn+s +
n Tnts

Ifk:4><2—|—1:9,thenZ"—iZ<1,then

= 1.

wn+8
Yn+10 = Tnio -
Dn+o +

xn+9 Yn+9 n
Dn+9 + Tn+48 (?/n+8> < Pr+o + oo (1)

Tris
Obviously, y,111 < 1.

Then {yn, yn+1} is a positive semicycle using the assumption vy, > yn+1 >
1, {Yni2,Ynss} is a negative semicycle, {y,+4,Yn15} is a positive semicycle,
{Yn+6, Yni7} is a negative semicycle, {y,1s, Ynio} is a positive semicycle, and
{Yn+10, Ynsr11} is a negative semicycle. If you used [ = 0 you will get the
second semicycle, and [ = 1 gives the second two semicycles, and [ = 2 gives
the third two semicycles.

Assume that the result holds for [ — 1, we prove it for [.
Iffork=41—-1,1=1,2,3,. y"*’“ > 1,and if for k=41+1,1=0,1,2,.

Yn+k
—yn+:71 < 1, then {y, 4, yn+4l+1} is a pos1t1ve semicycle and { Y, 14142, Ynra +3}

is a negative semicycle.

pn+k + _jn+k ( Ynt+k >

y Tn+4+k—1 Yn+k—1
n+k+1 — Ttk
Pr+k +

Tntk—1

n+4l 1 Yn+4l—1 n+4l 1
Prtai-1 + 57— (ynﬂlfz) Pntai—1+ 57— (1) _1
Yn+al = Tntdal—1 o

n+4l 1
Dn+4ai—1 + Prntai—1 + 37—

Tp4dl—2
Consequently, y,,+41+1 > 1 by induction hypothesis. Now, using the second

assumption we have

Tntdi+1l [ Yntdlt+l Tntdl41
pn+4l+1 + "En+4l ( Yn+41 ) pn+4l+1 + T (1)
<

y . o Tn+4l o 1
n+4l+2 — in+4l+1 j'n-‘,—4l-‘—1 o :
Prtaitr + =5 Prtai+1 + =
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It is clear that y, 1413 < 1. As aresult, {yn14, Ynrar1} is a positive semicycle

and {Yn+4a1+2, Yntar+3} 1 a negative semicycle. ]

Theorem 4.2.4 Let {y,} be a solution of Eq.({{.1). If there exists n such
that Yni1 > yp > 1 and y”:: <1 fork =41 —1, wherel = 1,2,3, ...,

and yy::: > 1 fork=2and k =41+ 1, where | = 0,1,2,..., then {y,}
is an oscillatory solution in which {Ynia1, Ynsar1} where I = 1,2,3, ... gives
all negative semicycles and {ynyair2, Ynrarrz} where I = 0,1,2, ... gives all

positive semicycles except the first one.

Proof. We proceed by induction. We are given that 3,1 > v, then % > 1,
which implies that

D1+ T2 (%) S Prt1 + T2 (1)

Yn+2 = = 1.
+ pn+1 + n+1 pn+1 + n+1
Then y,10 > 1.
Using the assumption Z:—Jj > 1, this implies that
_j"+2 y"_+2 Tn
y +g_anrQ_"f 1 <yn+1> >p”+2+xni? (1) _1
n - Tnt2 Tn42 -
Prt2 + 5 Pnt2 + 3

Then y,43 > 1, and {y,12,yni3} is a positive semicycle. Now, according to

the assumption when k =4 x 1 —1 = 3, we have y““’ < 1 and as a result we
get
+ Tnt3 [ Ynits Tn43
DPn+3 Pz \vne) Pr+s + 70 (1)
yn+4 7L n =
Dn+3 + Z iz DPn+3 + iniz

Then y,14 < 1. It is obvious that y,14 < ¥ny3, which gives that '7;"—12 < 1,
then

ZTnta [ Ynta Tnya
, Pnvat 2 (yn+3> . Priat 2o, (1)
n+5 — Tn4d Tnt4 -
Prta T 305 Prva+ 305

Then Y15 < 1, {Yns4, Ynss} is a negative semicycle.

Tnt4a
YUn+e = Tnis Tn+5 T

Pn+5 + Pn+s +

poat 255 (555)  pwat 22.0)
> —_—

T n+4 En+4
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Since for k =4 x 1+ 1 =5 we have that ZyJ”—jj > 1 as in the assumption, then
Yn+6 < 1. And

Tn46 [ Ynté Tn
Pnt6 T 3 n+5 <yn+5> Pn+6 + 3 I? (1)
yn+7 = Tnt6 > Tn+6 -
Pnie + 5 Pnt6 + 5
Since Yni6 > Ynis we have 2M > 1, then y,47 > 1. Thus, {yni6,Yni7} is &

positive semicycle.
Whenk:4><2—1:7,thenz"—i;<1andweget

Pnt7+ i::[; (%) Pt + 220.(1) B

Yn+8 = Zntt
n+ Tnt7 Tpt7
DPn+7 + Tnie DPn+7 + Tnio

yn+8

Now, yn,+s < 1 and 4,7 > 1, then < 1, as a result

$n+8 Yn+8 x»,H_g
Pn+s + Tpi7 <yn+7> Pnys t Tpat (1)
Yn+9 = < = 1.
Drs + 28 Dntg + 22t8
n+ Tn+8 n Tnt7

As a result, {yn+s, Ynio} is a negative semicycle. If k =4 x 2+ 1 =9, then

Int9 > 1 and
Yn+8
xn+9 Yn+9 Tni9
pTL+9 + $n+8 (yn+8> pn+9 + Tn4+8 (1) .
Yn+10 = + Tnto > + Tnto
DPnvo T 7 DPnvo T 7 "¢

Clearly, y,111 > 1. The semicycle {y,110, Yns11} 1S a positive semicycle.
The result says {yniai, Yniair1} is a negative semicycle, [ = 1,23, ..., and
{Ynsdi+2, Ynrai+3} 1S @ positive semicycle, [ =0, 1,2, ....

Now, setting [ = 0 in the second semicycle gives the positive semicycle
{Yn+2, Ynr3} if we set [ = 1 in the first semicycle, we get the negative semi-
cycle {Ynia,Ynis}. If I = 1 in the second semicycle, we get the positive
semicycle {y,16, Yni7}, taking [ = 2 in the first semicycle gives the negative
semicycle {yn1s8, Ynto}. [ = 2 in the second semicycle produces the positive
semicycle {y,110, Yni11}, and these results match with the previous conclu-
sions.

Assume that the result holds for [ — 1. We prove it for .
Iffork=41-1,1=1,2,3,. y"“ <1l,andiffor k=4l+1,1=0,1,2,.
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Yn+k . . . .
—y“:il > 1, {Ynsai, Ynrars1} 1S a negative semicycle and {y, 4142, Yntarrs} 1S

a positive semicycle. In other words,

pn+k + $n+k ( Yn+k )

y Tntk—1 Yn+k—1
n+k+1 — Tnyk
Ptk + 3 .
For k=4l-1
p e + Tpy4l—1 Yn441—1 + n+4l 1 (1)
n+4i-1 Tpial—2 \ Yntdal—2 pn+4l 1 Trtal—2 -1
yn+4l + n+4l 1 + n+4l 1 o
Pntai-1 7 7 7, Prtai-1 7 3 07,

Consequently, y,+41+1 < 1 by induction hypothesis. Now, using the second

assumption we have

Tn4dl+1 [ Yntdl+l Tppal1
Prvater + 75 < Yntal ) Prarer + = 7 (1)
Yn+ai+2 = D 4 Tnaiyl > P 4 Tntair =L
n—+41+1 Tntal ntdl+l Tn+41

It is clear that y, 413 > 1. As a result, {ynia, Ynrair1} 1S @ negative semi-

cycle and {Yn141+2, Yntai+3} is a positive semicycle. []

Theorem 4.2.5 Let {y,} be a solution of Eq.({{.1]). If there exists n such
that Y, < Ynt1 < 1 and y”:: <1 fork =41 —1, where |l = 1,2,3, ...,
and i"*’“ > 1 for k=4l + 1, where | = 0,1,2, ..., then {y,} is an oscilla-
tory solution in which {Yn1a1, Yniars1} where | = 1, 2,3, ... giwes all negative
semicycles except the first and {Ynia1+2, Ynrairst where l =0,1,2, ... gives all

positive semicycles.

Proof. We proceed by induction. v, < ¥,+1, then % > 1, which gives

Pyt + L (Z,—*) (1)

Yn+2 = =
pn+]_ + n+1

Then y, 40 > 1.
It is clear that y,.19 > yn11, then % > 1, this implies that

Tn Yn
Pn+2 + Ini? <ynii> Pn+2 + fl?n+1 (1)
Yn+3 = 5 > Troso =1.
Pn+2 + Tut Pn+2 + nt

T n+1 jn-«—l
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Then y,.3 > 1, and {y,12,Yns3} is a positive semicycle. Now, when k =
4 x 1—1 =3, according to the assumption % < 1, then

Tnt3 [ Ynit3 Tn+3
y Pnis T 3 n+2 (yn+2> < Pny3 t Tnao (1)
n+4 = xn+3 Z'n+3 =
DPn+3 + Tnio Dn+3 + Tniz

Then y,+4 < 1. It is obvious that y,14 < yni3, which gives that zz—j:;‘ < 1,
then

n+4 Yn+4 Z'n+4
, Pnta+ 277 (—%3) . Prsa+ 75 (1)
n+5 — Tntda Tnia
Prta+ 505 Pria T 3,5

Then y,45 < 1 and {y,14,Yn15} is a negative semicycle.
When k=4 x1+1=5, zz—ii>l, then

Tn45 [ Ynts Tpys
y Pn+5 + Tria (yn+4> - DPn+s -+ xn+4 (1)
n+6 o I s =
Pnts + 300, Pnis + = wn+4
ZTnt6 [ Yn+6 Tnt6
Pnt6 T 3 n+5 (yn+5> S Pnve t 3 _ (1)
Tnt6 zn+6
DPn+6 + Znts Dn+6 + Tnts

yn+6

Yni6 > Ynis, consequently > 1 and y,47 > 1. As a result {y,16, Yni7} 1S
a positive semicycle.

Whenk:4x2—1:7,thenzz—ig<1andweget

xn+6
yn+8 n+7 =
Pn+7 +

Tnt7 [ Ynt7 n
Pnt7+ 55 <yn+6> . Prgr + ot (1)

T n+6

yn+8

Now, yn,+s < 1 and y,+7 > 1, then < 1, as a result

Tn+8 ( Yn+8 Tn48
y Pris T 3 n47 (yn+7> < Pnys + 3 7 (1)
n+9 — Tn+8 Zn+8 =
Dn+s + Znis Dn+s + Tpirt

As a result, {y,1s,Ynio} is a negative semicycle. If k =4 x 2+ 1 =09, then
Intd > 1, then

Yn+8
xn+9 Yn+9
pn*{)_% Tn+8 <yn+8> pn4{)_F xn+g (1) -
Ynt+10 = Fnto > =
Pn+9 + Tnis Pn+9 + in+g
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Clearly, y,+11 > 1. The semicycle {y,+10, Yn+11} is a positive semicycle.

Then {yn,ynr1} is a negative semicycle and this results from the as-
sumption ¥, < Ynr1 < 1, {Ynio, Yns3} is a positive semicycle, {yni4, Ynis}
is a negative semicycle, {yni6, Yni7} is positive semicycle, {y,is, Ynio} is a
negative semicycle, and {yn110, Yn+11} is a positive semicycle. If you used
[ = 0 you will get the second semicycle, and | = 1 gives the second two
semicycles, and [ = 2 gives the third two semicycles.

Assume that the result holds for [ — 1. We prove it for [.
Iffork=4l-1,1=1,2,3,. y”*’“ <1l,andiffor k=4l+1,1=0,1,2,.

) ﬁ > 1, {yn+4lvyn+4l+1} Is a negatlve semicycle and {yn+4l+2ayn+4l+3}

is a positive semicycle. In other words,

pn+k + 7in+k ( Yn+k >

y Tntk—1 Yn+k—1
n+k+1l — Ttk
pn+k + jn«kkfl
For k=4l -1
Tptal—1 Yn+4l—1 n+4l 1
Dn+ai—1 + Trtdl—2 (yn+4l—2> Pntai—1 + Tdl_2 (1) _
yn+4l - p " 1+ n+4l71 p Al 1+ n+4l 1 - '
ntdi— in+4l72 n+ T n+4l—2

consequently, y,+4+1 < 1 by induction hypothesis. Now, using the second

assumption we have

Tpni4le1 Yn+4i+1 Tpale1
Prtaitr + == ( Urral ) Prtar1 + 5H(1) _q
yn+4l+2 + n+4l+1 > + n+4l+1 o
Prtai+1 T =z "7 Drnvarvr T =7

It is clear that ¥, 413 > 1. As a result, {ynia1, Yntai+1} IS & negative semi-

cycle and {Yn14142, Yntai43} is a positive semicycle. ]

Theorem 4.2.6 Let {y,} be a solution of Eq.. If there exists n such
that ypi1 < yp < 1 and y”:’“l <1 fork =2 and k = 4 + 1, where

I = 0,1,2,..., and -2 > 1 for k = 4l — 1, where | = 1,2,3, ...,

Yn+k—1
then {Yniar, Yntars1y where | = 1,2,3, ... gives all positive semicycles, and

{Yn+a1+2, Yntarr3} where 1 = 0,1,2, ... gives all negative semicycles except

perhaps the first.
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Proof. We proceed by induction. 4,41 < y,, then % < 1, which gives

P + 22 (yz—:l> a5 ()

Yn+2 = an zn+1 -

Pn+1 + Pn+1 +

Then y,10 < 1.
It is assumed that yyi—:: < 1 for k = 2, then z”—ﬁ < 1, this implies that

Tnt2 [ Ynt2 Eny2
Prnt2 + 3 <yn+1> _ P2+ 3 (1)
Yn+3 = Zn =
Tn+2 Tn42
Pn+2 + Tnt1 Pn+2 + Tni1

Then y,.3 < 1, as a result {y,.2,Yn13} 1S a negative semicycle. Now, when

k=4 x1-—1=3, according to the assumption zzﬁ > 1

Zn+3 [ Yn+3 Tnys
y pn+3 + Tn+2 <yn+2> > pn+3 + Int2 (1)
n+4 — Tnt3 Tn43 -
Pnts + 3, Pnts + 37,

Then 4,4 > 1. It is obvious that 4,14 > yni3, which gives that z"—jrj > 1,
then

Potat+ 20 (—§Zi§) Pt (1)
Yn+s = " n =
Pn+4 + i 12 Pn+4 + inii
Then yny5 > 1, {Ynt4, Ynts} is a positive semicycle.
When k=4 x1+1=5, &2 <1 then
? Yn+4 3
ZTn Yn Tn
Pt 22 (—ynjj) PR )
Dn+s + 3 ii Dn+5 + ﬁ

Tnis
Yn+7 = 1 Znie + Znte -
Prn+eé Tnis Pn+te Tnis

yn+6

Pnye t i:ig (%) . Pnte + 228 (1) B

Since Yni6 < Ynis, SO < 1, then y, 7 < 1 and {y,16, Yns7} 1S a negative
semicycle.

Whenk::4><2—1:7,thenz”—iz>1andvveget

Tnt7 [ Ynt7
. Pn+1+ 20 <yn+6> N Poir + 2 In% (1) B
+8 — ZTn -
" Pn+7 + L Pnt7 +

Tn+6 jn+6
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yn+8

Now, 9,48 > 1 and y,,.7 < 1, then > 1, as a result

Tn+7

Yn4+9 = T -
n+8 Z'n+8
Dn+s + Tnis Dn+8 + Tpit

. (ii—ii> Pt BE)

As a result, {yn1s, Ynio} is a positie semicycle. If k =4 x 2+ 1 =9, then
Intd < 1, then

Yn+8
Znto [ Ynto Tnio
y Pnto + 3 <yn+8> B Prto + 50y (1)
n4+10 = Tnio Tnio
Dn+9 + Tnis Pn+9 + Tris

Clearly, y,111 < 1. The semicycle {y,110, Yn+11} 1S a negative semicycle.
Now, we have two semicycles {yn1a1, Ynrarr1}, and {Ynsar12, Ynrarrs}, [ = 0in
the second semicycle gives the negative semicycle {y,12,Yni3}, { = 1 in the
first one gives the positive semicycle {y, 14, Yni5} and in the second one gives
the negative semicycle {y,16, Yni7}, [ = 2 in the first one gives the positive
semicycle {y,1s,Ynio} and in the second one gives the negative semicycle
{Yn+10: Ynt11}

Assume that the result holds for [ — 1. We prove it for [.

If for k =41 —-1,1=1,2,3,..., yfj"—zkl > 1, and if for k = 4l + 1, ] =

0,1,2,..., yyi% < 1, then {yn1a1, Ynrar1} gives all positive semicycles, and

{Yn+a1+2, Yn+ai+3} gives all negative semicycles except perhaps the first. In

other words,

pn+k‘ + 7in+k: ( Yn+k )

y Tn+k—1 Yn+k—1
n+k+1l — Ttk

pTL—‘rk + jn«kkfl
For k=4l-1

Tntdal—1 [ Yntal—1 Tral—1
Prtai1 3 n+4l—2 (yn+4l 2) Pntai-1+ 3 ntdl—2 <1)
Yntar = D + Tptal—1 ) + Tpyal—1 =1
n+4l—1 Trtal—2 n+4l—1 et dal_2

consequently, ¥,1441 > 1 by induction hypothesis. Now, using the second

assumption we have

Tpni4l41 Yn441+1 Tpall

Prtai+1 + =0 < I ) _ Prtar1 + (1) _

Yn+al+2 = + Tptal+1 + Tn4l41 = 1.
Prait1 + — Prtai+1 =5

It is clear that y,4 4.3 < 1. Asaresult, {ynia, Ynsar1} 1S a positive semicycle

and {Yn+a142, Ynrairs} i a negative semicycle. ]
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4.3 Applications
Definition 4.3.1 We say that {p,} is periodic with prime period k if

Pnik = Pn for n=—1,0,....

Assume that {p,} is periodic with period k.

p = liminf p,,
n—oo
and
g = limsup p,,.
n—oo

Lemma 4.3.1 A necessary condition for the existence of a periodic solution
{zn} of Eq.({.1) with prime period k is that {p,} is periodic with period k.

Proof. Assume that z, is a periodic solution with prime period k, so we

have x, . x = z,, for n = —1,0, ..., we have
L4k
Tntk+1 = Pntk + .
Tntk-1
So we get that
o Tn+k o Tn o
Prn+k = Tntk+1 — = Tp4+1 — = Pn-
Tn+k—1 Tn—1

Then p,, . = pp, this means that {p,} is periodic with prime period k&. =

Theorem 4.3.1 Assume that p, is periodic with prime period k, and let
1 < p < q. Then there exists a positive periodic solution {Z,} of Eq.

with prime period k.

Proof. We aim here to show that there is a periodic solution for Eq.({4.1)

with period k. It is enough to show that the system has a positive solution.

Tk

Lo
Ty=pot — =pct :
T_1 Tr—1

X X1
Tyo=p1+—=p1+—.
Zo Tk

T2

T3 =p2+ —.

Ty
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Tr—1

Tk = Pr—1 + :
Tp—2

Define a function F' : Ri — Rf‘; such that,

Ug U Uk—1
F(u1>u27“'7uk): (pk+ 7p1+_>"'7pk71+ ) .
Up_1 U Uk—2
In addition define an interval I = [%, 7%] . Now, we aim to show that I*

is invariant under the function F. If uy, uq, ...,u; € I, we have

U;
pi + —
uj

for i=1,2,....k,7=(i—1) modk

since the above system is periodic of period k ,

U;

pi + —

uj

pg—1

-1

>pt gt

1

_ . b=l

_pg—p+tp—1
q—1

_pg—1

q—1’

for i=1,2,...,k,j=(—1) modk

for the same reason as above.
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Then p; + Z—; €lfori=1,..,k j=(i—1) mod k. So I* is invariant under
the function F. Now, we have F' : I¥ — I*¥ and F is continuous on I* and
I* is convex and compact. Then, by Brower Fixed Point Theorem F has a
fixed point in I*.

Assume that the fixed point is (i, o, ..., ux) € I*. Define the sequence

T =Up_1, To=1u and ZTppe; =u;, for 1 =1,2,...., m=0,1,...

This sequence satisfies the Eq.(4.1)) and is periodic with period k.
n

Corollary 4.3.1 Assume that {p,} is a convergent sequence and
lim p, =p> 1.
n—oo

Then every solution {x,} of Eq. 18 convergent and

lim x, =p+ 1.

n—oo

Proof. {p,} is bounded so {z,} is bounded and persists according to (4.1.1)).
And we have

A =liminf z, and p = limsup x,,.
n—oo n—o00

And

p = liminf p, and ¢ = limsup p,.
n—00 n—00

And from Lemma (4.1.2]) we have that

{pn} is convergent so p = liminf,_,., p, = limsup,_,. p, = ¢. Then we have

that )4 )
B ca<pu<BC

p—1 p—1
So we have A = = p+ 1. Then as a result we get lim, ,. oz, =p+1. =

p+l=

=p+ 1.
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